
IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016 2149

Reducing Internet Latency: A Survey
of Techniques and Their Merits

Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang,
Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, and Michael Welzl

Abstract—Latency is increasingly becoming a performance bot-
tleneck for Internet Protocol (IP) networks, but historically, net-
works have been designed with aims of maximizing throughput
and utilization. This paper offers a broad survey of techniques
aimed at tackling latency in the literature up to August 2014,
as well as their merits. A goal of this work is to be able to
quantify and compare the merits of the different Internet latency
reducing techniques, contrasting their gains in delay reduction
versus the pain required to implement and deploy them. We found
that classifying techniques according to the sources of delay they
alleviate provided the best insight into the following issues: 1) The
structural arrangement of a network, such as placement of servers
and suboptimal routes, can contribute significantly to latency;
2) each interaction between communicating endpoints adds a
Round Trip Time (RTT) to latency, particularly significant for
short flows; 3) in addition to base propagation delay, several
sources of delay accumulate along transmission paths, today in-
termittently dominated by queuing delays; 4) it takes time to
sense and use available capacity, with overuse inflicting latency on
other flows sharing the capacity; and 5) within end systems, delay
sources include operating system buffering, head-of-line blocking,
and hardware interaction. No single source of delay dominates
in all cases, and many of these sources are spasmodic and highly
variable. Solutions addressing these sources often both reduce the
overall latency and make it more predictable.

Index Terms—Data communication, networks, Internet, perfor-
mance, protocols, algorithms, standards, cross-layer, comparative
evaluation, taxonomy, congestion control, latency, queuing delay,
bufferbloat.

I. INTRODUCTION

MANY, if not most, Internet Protocol (IP) networks and
protocols have traditionally been designed with opti-

mization of throughput or link utilization in mind. Such a focus
on “bandwidth” may well be justified for bulk-data transfer,
or more generally for applications that do not require time-
liness in their data delivery. However, nowadays the quality
of experience delivered by many applications depends on the

Manuscript received May 9, 2014; revised September 1, 2014; accepted
October 17, 2014. Date of publication November 26, 2014; date of current
version August 19, 2016. This work was supported in part by the European
Community under its Seventh Framework Programme through the Reducing
Internet Transport Latency (RITE) Project (ICT-317700). The views expressed
are solely those of the authors.

B. Briscoe is with BT, Ipswich IP5 3RE, U.K.
A. Brunstrom is with Karlstad University, 651 88 Karlstad, Sweden.
A. Petlund, D. Ros, and C. Griwodz are with Simula Research Laboratory

AS, 1364 Fornebu, Norway.
D. Hayes, S. Gjessing, and M. Welzl are with the University of Oslo, 0316

Oslo, Norway.
I.-J. Tsang is with Bell Labs, Alcatel-Lucent, 2018 Antwerpen, Belgium.
G. Fairhurst is with the University of Aberdeen, AB24 3FX Aberdeen, U.K.
Digital Object Identifier 10.1109/COMST.2014.2375213

delay to complete short data transfers or to conduct real-time
conversations, for which adding bandwidth makes little or no
difference. As a result, latency in the current Internet has been
gaining visibility as a truly critical issue that impairs present-
day applications, and that may hinder the deployment of new
ones. It is therefore important to: (a) understand the root causes
of latency, and (b) assess the availability of solutions, deployed
or not, and their expected contribution to lowering end-to-end
latency. This paper seeks to address these questions. We offer
a broad survey of techniques aimed at tackling Internet latency
up to August 2014, classifying the techniques according to the
sources of delay that they address, i.e., where delays arise along
the communications chain. To decide on the best classification
system, we tried a number of alternative systems: classifying
by sources of delay was the easiest to understand and led to
the fewest gaps and least overlap. We also attempt to quantify
the merits of a selection of the most promising techniques. We
decided to focus on reduction in delay and ease of deployment,
which loosely represent the main tradeoff between benefit and
cost (‘gain vs. pain’). The benefits of any technique are highly
scenario-dependent, so we carefully chose a set of scenario
parameters that would be amenable to visual comparison across
an otherwise complex space.

A. Importance of Latency to Applications

Latency is a measure of the responsiveness of an application;
how instantaneous and interactive it feels, rather than sluggish
and jerky. In contrast to bandwidth, which is the rate at which
bits can be delivered, latency is the time it takes for a single
critical bit to reach the destination, measured from when it was
first required. This definition may be stretched for different
purposes depending on which bit is ‘critical’ for different
applications, the main categories being:

1) Real-time interaction, where every ‘chunk’ of data pro-
duced by an end-point is unique and of equal importance
and needs to be delivered as soon as possible, for example
an on-line game, or an interactive video conference (the
‘critical bit’ is therefore the last bit of each ‘chunk’).

2) Start-up latency, where the time to begin a service is most
important, as at the start of a video stream (the ‘critical
bit’ is the first bit of data).

3) Message completion time, where the time to complete a
whole (often small) transmission is most important, for
example downloading Javascript code to start an applica-
tion (the ‘critical bit’ is the last bit of the message).

1553-877X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.ieee.org/publications_standards/publications/rights/index.html

2150 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 1. Waterfall diagram showing the timing of download of an apparently uncluttered example Web page (ieeexplore.ieee.org), actually comprising over one
hundred objects, transferred over 23 connections needing 10 different DNS look-ups. The horizontal scale is in seconds. This access was from Stockholm, Sweden,
over a 28 ms RTT 5 Mb/s down 1 Mb/s up cable access link, using Internet Explorer v8 without any prior cache warming. Source: www.webpagetest.org.

An important characteristic of latency is that it is additive
in nature and accumulates over the communication session or
application task. Distributed systems involving machine to ma-
chine interactions, e.g., Web services, consist of long sequences
of automated interactions in between each human intervention.
Therefore even slight unnecessary delay per transfer adds up
to considerable overall delay. For instance, Fig. 1 shows the
connections involved in downloading an apparently uncluttered
Web page (ieeexplore.ieee.org). This unremarkable example is
fairly typical of many Web pages. Closer examination shows
that the critical path of serial dependencies consists of about
half a dozen short TCP connections, each starting with a
3-way handshake and each preceded by a DNS look-up, adding
up to at least six back-and-forth messages each, and totaling
nearly forty transfers in series. It might be considered that
delays up to say 50 ms are so close to the bounds of human
perception that they are not worth removing. However, adding
40 × 50 ms would delay completion of this example page
by about 2 seconds. Experiencing such unnecessary delay on
every click during a browsing session makes the experience
unnecessarily intermittent and unnatural.

In 2009 a team from Microsoft found that artificially in-
troducing 500 ms extra delay in the response from the Bing
search engine translated to 1.2% less advertising revenue.
Google experimented with injecting 400 ms delay before they
returned their search page to a subset of their users. Initial
searches declined linearly over time, dropping by 0.76% after
6 weeks and continuing linearly after that. Interestingly, once
the artificially introduced delay was removed, it took a similar
period to linearly regain the original demand. These results
were presented in a joint Microsoft-Google presentation on

the value of reducing Web delay [1]. Google’s VP for search
pointed out that if Google’s experiment had been conducted on
their whole customer base, losing 0.75% of their 2009 revenue
would have lost them $75M for the year [2].

Certain applications suffer more when there is a large varia-
tion in latency (jitter). This includes time-stepped applications
such as voice or applications with real-time interaction, such
as on-line games [3]. In general, latency is characterized by its
distribution function, and the relative importance of the higher
order moments is application dependent.

B. Scope

We restrict our scope to generic techniques that are each
applicable to a wide range of ways the Internet could be used
in its role as a public network. Still, a few promising techniques
currently applicable only in private networks are included when
we see that they may be adapted to, or inspire solutions for,
the public Internet. We also draw a fairly arbitrary line to rule
out more specialist techniques. For instance, we include the
delay that certain applications (e.g., VoIP) experience when
initializing a session through a network address translator,
but we exclude initialization delay for other more specialist
middleboxes and applications.

We restrict our survey to sources of latency when the Internet
is working as it should. This excludes significant causes of la-
tency such as natural disasters, accidental misconfiguration, tol-
erance of network entities to faults and failures, and malicious
denial of service attacks—such causes can induce excessive
latency in the various sources we discuss, but they require their
own specialized treatment.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.webpagetest.org

BRISCOE et al.: REDUCING INTERNET LATENCY 2151

C. Paper Outline

The remainder of the paper is organized as follows:
Sections II–VI contain the main part of the paper: the survey of
available techniques for reducing communication latency. The
organization of these sections is outlined next. Then Section VII
illustrates how several techniques for reducing latency can be
combined into integrated solutions. For instance, this section
highlights the use of WAN accelerators and new protocols, such
as SPDY and QUIC. In Section VIII we justify having chosen
sources of delay as the organizing principle of our survey. We
briefly introduce alternative classification systems that we con-
sidered, and outline their pros and cons. In Section IX we seek
to quantify the gains offered by some key techniques from the
survey, relating this to a set of representative communication
scenarios. We provide a visualization of the tradeoff between
this gain and the likely difficulty to deploy each technique.
Finally, Section X draws conclusions.

D. Organization of Survey

There are clearly many possible ways in which we could
have organized this survey. We have chosen an organization that
presents techniques based on an analysis of the different sources
of delay encountered during a communication session. As with
any classification scheme, not all techniques map perfectly onto
the resulting structure, but we have found this taxonomy to be
the most useful organization for highlighting the various causes
of latency in the Internet and furthering an understanding of
how latency can be reduced.

Fig. 2 illustrates the organization of the main survey part
of this paper. The higher levels in the tree in Fig. 2 represent
sources of delay and the lowest level corresponds to families
of techniques for reducing this delay. The sources of delay are
classified into five main categories: structural delays, interac-
tion between endpoints, delays along transmission paths, delays
related to link capacities, and intra-end-host delays.

Structural delays (Section II) arise from the structure of
the network or the communication path that is used. This, for
instance, includes delays due to a suboptimal placement of
servers or content, and delays due to using suboptimal routes.
Structural delays and techniques to reduce them are illustrated
in yellow in Fig. 2.

Delays resulting from the interaction between endpoints
(Section III) include delays due to transport initialization and
secure session initialization, as well as delays from recovering
lost packets and from message-aggregation techniques. Delays
from the interaction between endpoints and techniques to re-
duce them are illustrated in light orange in Fig. 2.

Delays along transmission paths (Section IV) captures the
delays that may be encountered as data travels between a sender
and a receiver. This, for instance, includes propagation delay
and delay due to queuing in network nodes. Delays along
transmission paths and techniques to reduce them are illustrated
in green in Fig. 2.

Delays related to link capacities (Section V) include both
delays resulting from sharing limited capacity and delays from
protocol inefficiencies that under-utilize capacity and therefore
communication takes longer than necessary. Delays related to

link capacities and techniques to reduce them are illustrated in
blue in Fig. 2.

Intra-end-host delays (Section VI) are delays that occur
internally within host endpoints. This includes delays due to
buffering in the transport protocol stack and delays within the
operating system. Intra-end-host delays are illustrated in red
in Fig. 2.

While we have organized the presentation based on sources
of delay, it should be noted that similar principles can be shared
by solutions that address different sources of delay and are
applied at different layers. For instance, principles and solutions
used to reduce queuing delay along a transmission path can also
be used to reduce the delay due to buffering within an endpoint.

II. STRUCTURAL DELAYS

Internet communication relies on interactions between a set
of endpoint systems. The placement of the software compo-
nents, such as servers, caches, databases and proxies in re-
lation to a client endpoint can have a significant impact on
the application latency experienced by the client. The type of
application also imposes restrictions on the set of methods a
systems architect can use to minimize delay. Finally, when
a systems architect has chosen a placement scheme for the
components, the strategies used for accessing data need to
be wisely chosen to minimize delays. Given client-server is
a common arrangement, this section mostly focuses on ways
to minimize latency by optimizing the placement of services
and the use of data access techniques between Internet hosts
that reduce the delay experienced by a user (client) accessing a
server or a server backend system.

A. Sub-Optimal Routes/Paths

As illustrated in Fig. 3, the path used by the user endpoint
to receive a particular service may utilize a range of routers,
layer 2 communications services, servers, caches, and proxies.
When a packet travels between two of these entities, the total
latency is the sum of the propagation latencies of the links that
form the path, plus the latency inside all the network devices
(switches, routers, or network middleboxes) along the path.
This path latency is discussed in Section IV.

The selected path is usually determined by a routing
protocol—implemented by methods such as Multiprotocol La-
bel Switching (MPLS [4]), Border Gateway Protocol (BGP [5])
or Open Shortest Path First (OSPF [6]). These routing protocols
are typically configured with policies to optimize the choice of
path, dynamically exchange information to determine the best
path, or use a combination of the two to optimize a metric (such
as number of hops, or lowest “cost,” often expressed as the
inverse of the maximum link capacity).

Routing methods typically offer robustness to link failure, but
protocols that take congestion into account are confined to the
research domain [7], probably due to unresolved concerns over
stability. Hence, a minimal cost route based on link capacities
or link lengths might not be the path with the current shortest
latency, especially if this path is shared with other traffic that
adds queuing delay. Although methods such as Equal Cost
Multipath Routing (ECMP [8]) allow simultaneous use of more

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2152 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 2. Techniques for reducing latency organized by sources of delay.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2153

Fig. 3. Example of clients connecting to a server over the Internet. When a client requests a service over the Internet the connection may have to traverse
a wide range of different systems. Different access network technologies have different requirements and limitations, and network routing decisions based on
peering agreements may lead to sub-optimal routes from a latency perspective. Although transparent to the user, the connection might actually be intercepted by
a middlebox or served by a proxy cache. At any intermediate node, there may be buffering or processing delays that impacts the latency experienced by the user.

than one path—enabling the latency to be reduced by sharing
the capacity of multiple parallel links—a single flow is typically
assigned to only one path, which can result in two different
flows between the same pair of endpoints encountering very
different latency.

In Multi Topology Routing (MTR), each router has multiple
forwarding tables, one for each class of service [9]. If link
latency is one cost metric, then one class of service may
forward along the path with the lowest delay. A solution may
be offered by a multi-path routing protocol that can find several
paths between source and destination [10], dynamically routing
latency-sensitive traffic over the lowest delay path.

Paths may also be controlled at the transport layer. In
Multipath TCP (MPTCP [11], [12]), several paths are created
between the sender and the receiver, and a sender can then
choose which path (or subflow) to use for sending. Unlike
network-based techniques, the stability bounds of MPTCP
have been derived [13]. The RTT of each subflow is known by
the congestion control protocol on the sender side, which could
be used by MPTCP to select the lowest latency path. Apple’s
natural speech support service, Siri, uses MPTCP mainly for
resilience, but it is also hard-coded to prefer WiFi over cellular
given the likelihood of lower latency [14]. A future MPTCP
API is envisioned to give the application the ability to choose
a path with low latency and low jitter [15]. MPTCP is further
described in Section V-A.

Since routing decisions between networks are often con-
strained by the economic guidelines of peering agreements
between Internet Service Providers (ISP), the final chosen path
may not have the shortest latency, even when using a routing
latency metric. When a system architect wants to ensure that a
certain path is used so that latency for the service is reduced,
they can buy a dedicated tunneling service from their ISP,
reducing the chance of incurring extra latency from routing.
Another option is to use overlay hosts [16] to dynamically
identify alternative routes to endpoints.

B. Name Resolution

Most applications do not directly use the Internet addresses
that are used for routing, but instead rely on a name resolution
step, at least once before a client can request the actual service
for the first time. In name resolution, a client process called
the resolver retrieves addresses for a given domain name by
requesting a record from the Domain Name Service (DNS).
An earlier DNS response is usually cached by a resolver for
a period of time. If the record is not cached, a request adds a
latency of at least the RTT between the requesting end-systems
and the local DNS server. This local DNS server also usually
caches responses from the DNS system. When a record cannot
be resolved locally, a referral is forwarded upwards along the
DNS hierarchy, and potentially down again along the chain of
authoritative DNS servers for the specific name.

Jung et al. [17] surveyed the literature and studied DNS
resolution from the US and South Korea. They found that
roughly 85% of all requests were served from local DNS
servers. For 10% of all incoming TCP connections, servers
would additionally perform a reverse DNS lookup before al-
lowing a connection. Approximately 10% (US) and 25% (South
Korea) of all name lookups took more than 1 s, with more than
5% of all lookups from South Korea taking more than 10 s.
There can therefore be a significant variation in lookup time.
The time for a local DNS server to resolve a request required
more than 1 s in 8% of cases, while more than 45% of DNS
lookups took more than 1 s if 2 referrals were required.

Jung et al. found that names were Zipf-distributed across
all requests. This implies that an arbitrary enlargement of the
caches would not significantly increase the hit rate of the
local DNS server, because a DNS record expires after timeout.
Although timeout values are lowest for highly popular sites
(5 min is typical for websites that use DNS-based load-leveling
strategies), most cache misses are still due to lookup operations
for infrequently requested names. Ager et al. [18] presented
further analysis of load-leveled local DNS servers. Some ISPs

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2154 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

use random load-leveling, which then loses the benefits of
caching.

DNS pre-fetching is a method that can reduce latency by
attempting to resolve domain names before they are requested
[19], [20]. For example, a web browser may attempt to resolve
names when a web page is received and before a user chooses to
follow a specific URL. This is based on analyzing the content
or using explicit “pre-fetch” meta tags. This method can also
be used to fill the cache of a DNS proxy when a web proxy
is used and the web page is not encrypted. The cost of DNS
pre-fetching is that it generates additional network traffic, thus
consuming resources and potentially contributing to latency due
to contention.

Reducing DNS lookup latency is only one possible gain.
Often the DNS is used to direct the following data connections
of a client to a preferred server, which may be geographically
or topologically closer, have lower estimated latency to the
client, or be less heavily loaded than others. An example of
a system that provides such context-specific DNS responses
is Akamai’s Global Traffic Manager [21]. This can signifi-
cantly reduce latency. Otto et al. [22] found that the benefit
depends on the distance between the resolver and the local DNS
server. They found that 27% of ISPs clients’ resolvers were
topologically distant “far-away” DNS servers, increasing the
median time for starting a TCP connection, for example by 50%
accessing Akamai content. This optimization relies on locating
the client’s resolver. However, a current trend is to anonymize
the client location by bypassing the local ISP’s DNS server and
using open DNS resolvers with arbitrary physical locations.
Ager et al. [18] found that such resolvers fail to resolve to
servers in the local network, preventing optimization. Otto et al.
[22] clarify that the effect of using open DNS resolvers is
identical to using a far-away local DNS server assigned by an
ISP, i.e., a 50% median increase in the DNS latency.

C. Content Placement

The proximity of the content to the consumer is one of the
most important factors determining the experienced latency.
Services confined to run at a single location may experience
high loads. This can increase the server response time, and/or
result in increased queuing delay on the path to the server,
leading to high finishing times (Section IV). Also, a well-
built hierarchy of content may be necessary to make a popular
service scale to the demand. Considering which strategies to
use for placing the content to be served is therefore important
to anyone providing applications over the Internet.

1) Network Proxies and Caches: The caching techniques
used by the DNS (Section II-B) may also be used for application
data, allowing replicas of content to be served from other
network devices to reduce the completion time of transfers.

The simplest method is passive caching. This distributes a
replica of the content to a node closer to the client. All caches
have a limited storage and typically implement a content-
agnostic object replacement scheme. Although this will reduce
the access time for data available at the cache, it will sometimes
be necessary to contact the data source when there is a cache
miss, or content is uncachable. A cache miss increases the

response time, although the additional time is often small
compared to the RTT between the server and client. Caches
may be organized in tiers or layers and cache subtypes can be
identified (e.g., in the context of Web caching [23]).

A proxy cache is a network device that is typically located
close to a population of clients. It can be either a transparent or
a non-transparent (configured) proxy, and requires application-
level processing of each request. Proxy caches can reduce all
sources of latency, but they offload the content providers in
an unpredictable manner. Podlipnig and Böszörmenyi surveyed
object replacement strategies for web objects [25] and for
dedicated caching strategies for layered video [24].

The more static the content, the more the benefit from placing a
cache/proxy closer to a client. Such caching methods are unsuit-
able when data is generated in real time (e.g., games, dynamic
content, remote control operations or financial data updates).

Kroeger et al. [26] investigated the limits of latency reduction
for web caching, and observed only an average 22%–26% re-
duction, even for cache hit ratios of 47%–52%. This implies that
larger objects were less frequently cacheable than small ones.

A reverse proxy cache (see Fig. 4(a)) is a popular form of
proxy that is typically located close to a content provider’s
servers. This can reduce response times by holding replicas
of a specific subset of the server’s content. A reverse proxy
cache may also be implemented in an ISP’s network to handle
requests to popular content providers, adding a small processing
delay to offer the benefits of a “normal” proxy cache.

A load balancer (see Fig. 4(c)) is an alternative to a reverse
proxy. It redirects incoming requests to a server farm to one
of a pool of servers that hold either a subset or active replicas
of the content. Proactive replication in a server pool can better
spread server load and keep response times low; a classical
technique is Dynamic Segment Replication (DSR [27]). An
example is the Google web query architecture [28], where the
www.google.com address is first mapped using DNS to a server
farm, where a front-end web-server balances the load to index
servers, document servers, spell checkers, ad servers, etc. This
requires local processing and data-centre communication (see
later) to distribute and forward operation requests, each adding
small amounts of delay before a response reaches the user.

Push caching is a type of caching with active replication.
A content provider uses information about usage and regional
interest to send replicated objects to specific remote caches to
optimize response and finishing times.

Methods such as push caching and active replication have
been largely replaced by Content Delivery Networks (CDNs)
(see Fig. 4(b)). A CDN can manage replication and distribution
across multiple content providers, providing a multiplexing
gain that reduces hardware costs (e.g., the sophisticated edge
caching network used for YouTube content and live video [29]).

Measurements by Chen et al. [30] distinguished and com-
pared the times to retrieve the small static and dynamic ele-
ments of Bing and Google searches from their CDN’s frontend
and backend nodes. They provided a variety of visualizations
of their results, including one that showed that most clients
with a small RTT to a frontend node benefit from the CDN
(halving retrieval times and better), while clients with larger
RTTs benefit mostly from reduced jitter.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.google.com

BRISCOE et al.: REDUCING INTERNET LATENCY 2155

(a) (b) (c)

Fig. 4. Examples of solutions for content placement to reduce latency and improve scalability. (a) Placement of forward and reverse proxy. (b) Content delivery
network. (c) Load balancing.

Caching approaches are also used for streaming services,
and with the current trend of using adaptive segmented HTTP
streaming for progressive download of a sequence of video
segments, caching infrastructures have become an important
means of latency reduction. Creating a streaming experience
requires both short finishing times and stable response times
for the download of video segments. YouTube has received the
most attention of all CDN services. In 2008, Saxena et al. [31]
distinguished between videos delivered from YouTube servers
and YouTube videos delivered from Google’s CDN (YouTube
has since been integrated into Google). This found that nearly
50% of segments received from the Google CDN had a sub-
second finishing time, while YouTube’s own servers delivered
only 5% of segments with a finishing time below 1 s. By 2012,
Google’s CDN served all YouTube traffic, using a three-layer
caching system that supports conditional caching with a 90%
hit rate.

Network proxies may also perform operations and services
on behalf of an origin server for other applications. In interac-
tive multi-user applications, collaborative applications or net-
worked virtual environments, well-chosen placement of proxies
can reduce the average latency, by migrating application state to
a dynamically selected server depending on location and time
of the day [32].

2) Client Caches: A local cache at a client can also be used,
e.g., Web client caching can reduce latency for repeated requests
for the same object. In contrast, data pre-fetching in HTML5 al-
lows a web application to control the set of objects that are cached
and allows a user to interact with cached content when
offline.

The responsiveness of many modern web applications that
execute on a client may be increased by enabling them to au-
tomatically receive (“pushed”) content [20], [33]. This requires

a server to maintain a (persistent) channel to send data, rather
than using a separate transport connection for each object. In
many cases pushed content can reduce access latency, but when
the content competes for limited network resources (e.g., over
capacity-limited mobile/wireless links), it can add to network
queuing and induce latency for other flows.

3) Prediction and Latency-Hiding: If an application has
data transfers that follow strict rules, like physical laws or
predictable patterns, it may be able to ask for data to be
delivered before the time when the data is actually needed.

Predicting the need for application data relies on recognizing
specific application patterns, such as user behavior in an on-line
game. When the prediction is correct, such an approach may
save the time needed to request and deliver the data (1 RTT +
delivery completion time). A cost incurred by such schemes
is unnecessary data transfers caused by failed predictions. In
many cases, it may be difficult to provide predictions of a
quality that is good enough for practical use [34].

Another kind of commonly used prediction, is to hide net-
work latency by enabling the client to predict the expected
continued interaction behavior and display the prediction to
the user, e.g., dead-reckoning in gaming [35], [36]. Client-side
latency hiding does not reduce the actual latency, but can greatly
increase the quality of experience for the user. A high degree of
wrong predictions may however reduce the experienced quality
by inducing extra jitter.

A latency-reducing technique is also known from streaming
of virtual scenes. While view interpolation on the receiver side
is the essence of image based rendering [37], it does usually not
involve latency hiding. Model-based view-extrapolation [38],
[39] is a variant that avoids interaction delay from interactive
camera movement by interpolating the currently viewed scene
of a virtual world based on views that were previously received

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2156 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

from a server. The server sends difference images to correct
these estimates in retrospect and suppress drift.

D. Service Architecture

The client-server model is a frequently used architecture for
distributed systems. A single server endpoint can be replaced
by a (dedicated or shared) server cluster or a server farm.
Replication of itself does not improve latency, it only increases
capacity, because latency is solely influenced by the distance to
the server. With replication, servers are still placed at a fixed
(static) location and all client communication is still with one
of the servers. Users in different geographical locations will
experience different latencies for the same service, influencing
fairness, e.g., of an online game or a trading market. The
following sections outline various ways to re-arrange the basic
replicated server architecture to improve latency.

1) Structured Peer-to-Peer: The Peer-to-Peer (P2P) model
has become popular because of its scalability and because it
facilitates moving costs from the provider to an ISP and the
user, thus reducing the deployment cost for the service provider,
but at a higher overall cost for everyone involved due to the
overhead of setup and management of the P2P topology. While
unstructured P2P networks can be encumbered by large overall
latency, structured P2P networks can avoid much of this delay.

A system developed by Kumar et al. [40], for example,
reduced access latency to 25% of the well-known Chord P2P
system by optimizing the overlay structure. Small et al. [41]
proposed construction of a structured overlay topology to min-
imize the average global latency.

One major issue with the P2P model is that it can present
users with a large latency variance if the selection of peers
and tree topology is not carefully chosen. Wisely choosing
central “super-peers” and optimizing the construction of the
overlay can significantly influence the path latency [42]. The
tradeoff for optimizing the topology is that time must be
spent calculating optimal topologies, increasing the time it
takes before a topology for lower latency is established. Also,
the forwarding latency for P2P networks is often higher than
when using network-layer routing, because application layer
processing is not so likely to be optimized for forwarding. The
overhead of management and control in P2P networks tends
to increase complexity relative to a central control server with
global knowledge. Hybrid client-server/P2P solutions can ease
management of such scenarios and help maintain more stable
routes for application forwarding where delay variance must be
kept low. Standardization by the IETF ALTO working group
aims for increased efficiency of cooperative networks with P2P
overlays [43].

2) Cloud Server Placement: Cloud-based service architec-
tures move the backend/infrastructure to reside with a provider
of Infrastructure as a Service (IaaS), as offered by Amazon
Cloud [44], Microsoft Azure [45], Google Compute Engine
[46], and others. This placement provides the opportunity to
migrate the service between data centers around the world, and
offers flexibility to dynamically scale server resources up or
down to reflect fluctuating application demand.

By dividing user workloads over several servers placed
locally, processing delay may be significantly reduced, and
by moving the physical location of the server, the transport
latency can be dynamically optimized to meet the demands
of the average user of a system at any given time [47], [48].
The latency gain from relocating a server has to be traded
against the migration latency. Migration latency depends on
the propagation delay between the two locations plus the time
to complete movement of operational state. This operational
state continually changes (as opposed to the software image
and configuration state that can be run and configured in a
remote location before arrival of the operational state). Stateless
services do not require dynamic operational state, eliminating
migration delay, because the service can ‘make before break.’

Mobile devices are good candidates for needing resource-
intensive applications offloaded to the cloud, but high WAN
latencies (and/or relatively low link capacities) may hinder this.
Cloudlets [49] push the idea of datacentre relocation further by
placing resources very close to wireless terminals to facilitate,
for instance, cognitive-augmentation applications such as natu-
ral language translation or face recognition.

A downside of IaaS is that it may lead to larger variance in
processing time due to time-slicing of the hardware resources.
If an application has strict processing deadlines, the need for
direct hardware control and predictable processing time may
outweigh the flexibility of the IaaS model. Still, research on
using IaaS for real-time services indicates that the solutions
deployed today are able to meet the requirements for some real-
time services [50], [51].

3) Cloud Cache Placement: Another approach is to allow
caches (see Section II-C) to be spawned dynamically at a
location close to a user group. Since IaaS allows resources to
be scaled to meet the demands of an application, optimizations
may be implemented to dynamically adjust the content needed
and cache size to adapt to the local needs.

Globe-spanning Cloud services like Amazon EC2 can now
compete with P2P services for many latency-sensitive appli-
cations, since they reduce costs for service providers, offer
scalability and provide low response times. However, using
the clients as intermediate nodes for a hybrid client-server/P2P
model may yield latency benefits when combined with caching
and prediction mechanisms (see Section II-C).

4) Virtualizing Chains of Network Functions: In certain sce-
narios it is common for traffic to be passed through numerous
network functions, e.g., each wide-area link in an enterprise
may include a firewall, an intrusion detection system, a WAN
accelerator, a voice-gateway, an application-layer-proxy and an
edge-router; mobile networks contain long function chains too.

If each function is deployed as a separate physical box
(Fig. 5(a)), in the worst case the data would have to be serialized
or de-serialized four times per function—out of an intermediate
switch, into and out of the function and back into the switch.
All serialization delay can be removed by executing the whole
chain as virtualized network functions in the memory address
space of a single general-purpose server (Fig. 5(b)). Compari-
son of the block diagrams on the right of the figures illustrates
this point. If modern virtualization techniques such as single
root I/O virtualization (SR-IOV [52]) are used, processing

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2157

(a)

(b)

Fig. 5. Removal of repeated serialization delay using network functions virtualization. (a) A workload divided over 2 chains of 6 physical network appliances.
(b) The same workload divided over 3 general-purpose servers running virtualized chains of the same functions.

and switching latency (see Section IV-E) can match dedicated
hardware. And, in the virtualized case, bits can move between
functions in parallel over the memory bus, rather than in series
over network links.

Note that, in the hardware case, cut-through switching can
bypass the two serialization delays into and out of the switch,
at least for the payload (see Section IV-C). However, most of the
functions chained together in the above enterprise example act
on the payload, so cut-through cannot bypass any of the serial-
ization delay into or out of these functions. Also note that seri-
alization delay is typically small (e.g., 12 µs for a 1500 B packet
at 1 Gb/s) relative to wide-area propagation delays of millisec-
onds. So the sub-millisecond improvement from saving even
repeated serializations may only be significant for short paths.

Fig. 5 illustrates how a) physical appliances dedicate com-
puting resources to each function, whereas b) the virtualized
approach dedicates computing resources to subsets of the users’
workload. Thus, if one server is not powerful enough to execute
the whole chain of virtualized functions, the workload (not the
chain) can be divided over more servers. In the original physical
case, the workload is often divided over at least two chains for
resilience anyway (as shown in Fig. 5(a)).

III. INTERACTION BETWEEN ENDPOINTS

This section examines the latency introduced by end-to-end
protocols. Transport protocols operate over the network path
between a pair of transport endpoints. These transports may be
datagram-based (e.g., UDP) or connection-oriented (e.g., TCP).
These protocols can incur multiple control interactions between
the endpoints before data communication may start. End-to-
end protocol setup can also be needed at high layers (e.g., for
security).

TABLE I
NUMBER OF RTTs REQUIRED BEFORE DATA TRANSMISSION CAN START

(ADAPTED FROM [54, Table 1]). RESUMED SESSIONS OVER TCP
CONNECTIONS ARE SHOWN WITHOUT AND WITH TCP FAST OPEN (TFO)

An end-to-end protocol can also trigger control interactions
during a session, for instance to recover lost packets to provide
reliable transfer, or to assess the characteristics of a path
(e.g., available capacity, support for network features). Each
interaction incurs at least 1 RTT to communicate over the path
to the remote endpoint and receive a response. Reducing such
interactions can have a dramatic impact on latency, especially
for short data transactions.

Finally, an end-to-end protocol may merge messages (ei-
ther carrying application data, or only protocol signals) for
optimization purposes. Such optimizations, which reduce the
number of packets sent on the wire, may in some cases result in
additional latency.

Table I shows the number of RTTs required by certain
protocols before data can be transferred. If the host is unknown,
a DNS lookup (≤ 1 RTT to a remote resolver) is first required
(not shown in the table). If the DNS information is cached,
this RTT is avoided in future connection attempts. The column
marked ‘Resumed session’ shows how some protocols cache

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2158 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

connection state to speed-up subsequent communications that
use the same protocol to connect to the same host. Note that
the second alternative figure shown in Table I against Transport
Layer Security (TLS v1.2 [53]) is for the case where the server,
not the client, resumes sending data first. This makes one flight
(half a round trip) difference as illustrated in Fig. 9.

The remainder of the section examines how endpoint in-
teraction latency can be reduced by improvements to the
initialization of the transport mechanisms, security sessions
or middlebox traversal, by choice of end-to-end packet loss
recovery mechanisms, or by improving (or disabling altogether)
message-aggregation mechanisms.

A. Transport Initialization

Startup latency arises from the time to complete a protocol
handshake (e.g., at the start of a TCP [57], SCTP [61] or DCCP
[62] connection). At least one RTT of delay is incurred for each
sequentially completed handshake. In practice this delay can be
larger when there is loss (due to congestion, or to unsupported
features in the network and/or a middlebox), requiring a timeout
to restart the exchange. Communication options, even latency
reducing options, may need to be negotiated at the start of the
session. These can include: selection of alternate transport pro-
tocols, features such as Explicit Congestion Notification (ECN
[63]), use of relays to overcome the limitations of middleboxes,
etc. Each feature that requires negotiation can potentially add
further startup latency.

The impact of startup latency can be mitigated by reducing
the number of sequential protocol exchanges, and by multiplex-
ing data over an existing session or by persistent use of a session
(rather than opening and closing a session for each transfer).

1) Parallel Option Negotiation: Parallelizing option nego-
tiation can significantly reduce protocol initialization latency.
Happy Eyeballs (RFC 6555 [64]) allows simultaneous attempts
to connect using IPv4 and IPv6. This appears to double the
number of connection attempts, but by using a caching strategy
to store previous successful connectivity, the algorithm can
minimize the number of attempts and offer substantial delay
improvement. Most modern web browsers, i.e., Chrome, Fire-
fox, Safari, and Opera, support this algorithm.

This idea could be extended to other communication
options. For instance, many middleboxes inadvertently block
the Stream Control Transmission Protocol (SCTP) from end-
users even though it is usefully employed within the interior
of networks. Therefore, it would be desirable for end-users
to try to use SCTP if available, otherwise to fall back to TCP.
Reference [65] describes this approach, which is illustrated
in Fig. 6; the client attempts to simultaneously open both a
TCP connection and an SCTP association and, if the latter
succeeds within a short time interval, the former is aborted
then the application continues using SCTP. This may allow
the application to benefit from SCTP’s latency reduction
mechanisms, e.g., reliable out-of-order delivery without
head-of-line (HOL) latency (Section VI-B).

2) Reducing NAT Setup Delay: Many home networks em-
ploy port-mapping Network Address Port Translation (NAPT)
to share use of a single assigned address. A NAPT performs

Fig. 6. Happy Eyeballs technique applied to the setting up of transport-layer
connections.

mapping of addresses and rewriting of packet headers during
router forwarding. For data download to a device behind a
NAPT, this has little impact on latency, but for communication
initiated by a device on the public side of the NAPT (e.g.,
a VoIP or teleconference media call), this can incur latency
communicating with an off-path server(s) to discover a viable
candidate path between the endpoints, e.g., Session Initiation
Protocol (SIP [66]), signaling to invoke Interactive Connection
Establishment (ICE [67]). Once potential candidates are dis-
covered, connectivity checks are required to determine that a
candidate path is viable. This can result in appreciable hand-
shaking delay [68]. The delay can be mitigated by starting ICE
connectivity checks before the signaling completes negotiation
to set up the media flow, this parallel discovery can reduce the
overall latency for a flow to start. Some delays can also be
mitigated using P2PSIP, instead of a central SIP server [69].
When multiple candidate paths are found, ICE may be used to
minimize latency on the media path (this can incur additional
delay, waiting for more potential candidates to be validated).

In some cases the resultant path requires an off-path relay
using an application layer intermediary, e.g., Traversal Using
Relays around NAT (TURN [70]). A TURN media relay causes
packets to follow a longer than necessary path and incurs
additional latency in the media/data path [68], [69]. Well-placed
media relays (e.g., at network borders) can significantly reduce
the overhead of routing over a longer path. TURN may also be
used to impose a policy, e.g., in a corporate environment.

3) Fast Opening of TCP Connections: The current TCP
standard requires a TCP connection to start with a three-way
handshake that adds a round trip of delay before the server can
receive any request data.

The traditional three-way handshake serves multiple pur-
poses, not all of which were originally intended:

1) it allows a server to test that the client really is at the
address it claims to be using;

2) it synchronizes use of sequence numbers;
3) it has come to be used by middleboxes (including NATs

and firewalls) to initiate storage of connection state;
4) it allows the two endpoints to agree on the use of protocol

options;
5) it allows both endpoints to estimate the current round trip

time before sending data;
6) it allows a connection to detect congestive loss in each

direction using a minimal size packet;
7) it allows the client to shut down any duplicate connections

the server unwittingly opens in cases when a client’s
opening packet was duplicated.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2159

Fig. 7. TCP Fast Open (TFO) saves a round trip when resuming a connection.

Transaction TCP (T/TCP [71]) was an early attempt to
reduce latency for short transactional connections by replac-
ing TCP’s three-way handshake, instead storing a counter per
client at the server. However, once various security flaws were
discovered [72], T/TCP was not pursued further and the IETF
eventually moved its status to Historic [73].

TCP Fast Open (TFO [55]) is a more recent attempt to allow
a TCP connection to circumvent the three-way handshake when
the client opens a connection to a server to which it has recently
connected. The server does not have to hold any state between
connections, which simplifies load balancing in large server
farms. Instead, the server gives the client a TFO cookie that
the client sends when it opens a subsequent connection. This
allows a server to verify that an earlier valid handshake had
been completed. A client that sends an opening (SYN) packet
with a TFO cookie can include application data in that packet,
which the receiving endpoint can pass straight to the application
(represented by the loop1 in Fig. 7 joining the SYN with the
application request). In most cases this will reduce latency, but
it could incur additional delay, e.g., if a middlebox blocks the
cookie option.

A TFO client’s SYN packet and TFO cookie serves the first
four of the above purposes (except it may fail to achieve the
first behind a NAT because then it cannot detect client address

1In the case without TFO, an application can tell TCP to combine the ACK
ending the 3-way handshake with the application request. By default TCP sends
the ACK separately, so we have not shown a loop here.

spoofing), but not the last three. Therefore, when TFO resumes
a connection with an initial window of data, if the data is not
received, it will not have a current estimate of how long it is
safe to wait before retrying (item 5), and it will be too late
to discover that it should have sent less (item 6). The lack
of duplicate connection detection (item 7) means that TFO
is not a universal replacement for standard TCP, and must
only be used by applications that either test for duplicate con-
nections themselves or inherently do not care about duplicate
connections (e.g., pure look-up semantics). It is well-suited to
many latency-sensitive applications, such as web applications.
Radhakrishnan et al. [74] provides further rationale for TFO,
and evaluates its merits against alternative approaches.

Accelerated Secure Association Protocol (ASAP [75]) is a
proposal with goals similar to TFO—to eliminate the RTT
needed to complete the TCP three-way handshake. In contrast
to TFO, ASAP piggybacks transport-connection establishment
on a DNS lookup request. This requires modifications to the
DNS (namely, to the authoritative name server).

4) Application Pipelining: The earlier versions of the Web
protocols required unnecessary set-up of connections, with
consequent delays, but they have evolved to meet changing
demands and optimize performance. Web 2.0 has significantly
altered the characteristics of in-line objects, by allowing em-
bedding of additional services, e.g., for audio/video streaming,
or interaction with an Online Social Network (OSN). HTTP
1.0 [76] relies on multiple connections for concurrency. This
can add latency due to connection setup/teardown and TCP
slow-start. HTTP 1.1 [77] addressed this by allowing persistent
connections and pipelining of HTTP requests. This enabled a
client to decide to pipeline requests, which reduces the delay
waiting to request, but could lead to “Head-Of-Line” (HOL)
blocking delay (see Section VI-B) when a single transport
is used, e.g., when the first in a series of requests includes
dynamically generated content.

SPDY [78] introduces a number of latency-reducing tech-
niques, including a session layer that builds on pipelining in
HTTP 1.1 by supporting multiplexing of concurrent streams
over a single persistent TCP connection. SPDY is described
more fully in Section VII-A where protocols that combine
numerous techniques are outlined.

5) Path MTU Discovery: Although most Internet links sup-
port a Maximum Transmission Unit (MTU) of at least 1500 B,
many paths cannot sustain a Path MTU (PMTU) of this size,
due to one or more links with a lower MTU. Although a
lower MTU can reduce head-of-line latency from other flows
sharing a slow link, the more common reason for a reduced
MTU is the use of tunnel encapsulations. Path MTU dis-
covery is a challenge when using such paths. The original
path MTU discovery (PMTUD) algorithm [79] had drawbacks
that could introduce intermittent extra delay or even prevent
communication [80]. This was updated in the more robust
packetization layer PMTUD [81], but this still relies on occa-
sional probe packets sent along the path, which can introduce
recovery delay when a probe is larger than the actual PMTU
supported, and hence needs to be retransmitted. A discussion
of PMTUD and issues relating to use with tunnels is given
in [82].

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2160 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 8. Protocol timing diagram showing handshaking to initialize a transport
layer security session. False Start saves one round trip, but at this initial stage
TCP Fast Open (TFO) saves nothing, although it sets a cookie that may save
time later.

B. Secure Session Initialization

Security mechanisms have become the norm in Internet
communication. The use of an unmodified security protocol
can add significant latency to setup of an application flow as
illustrated in Table I. This has prompted proposals to update
security protocol interactions to reduce the number of RTTs,
with the potential to provide significant latency gains for short
sessions.

1) Faster Transport Security Negotiation: Transport Layer
Security (TLS) is the IETF-standardized successor to the Se-
cure Sockets Layer (SSL) that is universally used to authen-
ticate and encrypt HTTP connections (denoted by the ‘https:’
URL prefix). In TLS up to v1.2 [53] the handshake adds 2 RTTs
to the set-up of a typical connection where the client sends
data first, e.g., HTTP. Here we focus on TLS over connection-
oriented transports (TCP, SCTP, etc.), but similar approaches
could apply to datagram TLS (DTLS [83]).

a) TLS false start: False Start [58] begins sending appli-
cation data 1 RTT earlier than typical for TLS (see Table I).
The initial TLS handshake messages cannot be encrypted them-
selves because they negotiate encryption keys and certificates.
Instead, the respective ‘Finished’ messages that the client and
server use to complete the TLS handshake both include a hash
to validate all the previous messages in the handshake. False
Start allows a client to start the stream of encrypted applica-
tion data directly after its own ‘Finished’ message (Fig. 8),
whereas, in the original TLS, a client waits 1 RTT to receive

the corresponding ‘Finished’ message from the server before
transmitting encrypted data.

If a client resumes an earlier session, the original TLS pro-
tocol already permits an abbreviated handshake that takes only
3 sets of messages (half a round trip each) instead of 4. A client
cannot use the False Start approach to improve on this, because
in the abbreviated handshake a regular TLS client already starts
transmitting encrypted data directly after its ‘Finished’ message
(see Fig. 9(a)), because, in contrast to the full handshake, the
server sends ‘Finished’ first.

On the other hand, if the server resumes the session first, e.g.,
it has updates to a previous response, it can use False Start
to save 1 RTT (see Fig. 9(b)). This is why Table I shows two
alternative delays for a resumed False Start session. Fig. 9 also
shows how TCP Fast Open (TFO—see Section III-A3) can be
combined with TLS False Start to save an additional RTT.

Google deployed False Start in Autumn 2010, on the as-
sumption that a unilateral change at the client end would
work with all existing servers. However, an unacceptably large
number of SSL terminator hardware middleboxes occasion-
ally and non-deterministically failed to support the protocol,
probably because of unexpected message timing. Therefore,
since April 2012 False Start has been disabled in Chrome with
one important exception; when a server confirms support for
Next Protocol Negotiation (NPN [84], [85]) or Application
Layer Protocol Negotiation (ALPN [86]). A server farm that
supports NPN or ALPN is assumed to have upgraded any
SSL termination middleboxes. Use of NPN and ALPN allows
a session on a HTTPS port to use any application protocol,
not just HTTP, without additional rounds of negotiation. This
enables new protocols such as SPDY (see Section VII-A) and
HTTP/2 to be used through middleboxes that block ports other
than HTTP and HTTPS. And with False Start these protocols
can be secured in one handshaking round, not two.

b) TLS Snap Start: TLS Snap Start [59] enables a client
to send encrypted and authenticated application data without
waiting for any handshake from the server. The client needs
certain information about the server (its cipher suites, its public
certificate, etc.). Therefore Snap Start is not applicable for
ephemeral key techniques (e.g., Diffie-Hellman), nor for ses-
sions resumed by the server end.

Because the pre-requisite server information is public and
fairly stable, it can have been retrieved from a directory, e.g.,
using the Session Keys protocol [87], or pre-fetched when
opening a referring Web page [88]; the client does not need
a prior session with the server itself. Therefore, Snap Start
is more generally applicable than just session resumption.
Resuming a session could never be better than Snap Start,
because it creates new secrets for each new session without
any handshaking delay. It also does not need to store secrets
between sessions.

The insight of Snap Start is that the random information
that the server provides for TLS does not need to be random;
it only needs to be unique to prevent replay of the whole
session. Therefore, the client suggests a unique value for ‘server
random’ and timestamps it. It then sends a hash of the whole
handshake it predicts the server would have used. Without wait-
ing, it then optimistically encrypts its first message to the server

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2161

Fig. 9. Protocol timing diagram showing handshaking to resume a transport layer security session. (a) Client data sent first. False Start saves no time in this case,
but TFO saves one round trip. (b) Server data sent first. Both False Start and TFO save one round trip each in this case.

Fig. 10. TLS Snap Start timing diagram, showing it can remove all handshak-
ing delay from TLS.

using these cryptographic choices (see Fig. 10). The server only
proceeds if its own hash of the cryptographic choices matches
the client’s prediction and the value of ‘server random’ is indeed
unique. Uniqueness is checked against the ‘strike-list’ of values
used by clients. To limit storage and look-up overhead, a server
can limit the oldest allowed timestamp (so it could reject clients
that are not at least loosely synchronized). The allowed range
of random numbers may be limited by publishing a well-known

‘orbit’ value that clients must look up along with the other
public information.

Snap Start was developed by Google, and deployed on their
servers and in the Chrome browser in 2010. However on 23rd
June 2011 Google decided to withdraw it, for reasons that re-
main unclear. The method exhibits an inherent vulnerability to
downgrade attacks if any cipher suite that was previously con-
sidered secure is found to be compromised. However, that risk
was known before Snap Start was released. A more plausible
reason for withdrawal is the method’s operational complexity.
Nonetheless, the promise held out by Snap Start inspired the
IETF to start work on a new low latency version of TLS (v1.3)
in late 2013 [89]. The focus is on new ways to ensure session
uniqueness against replay attacks.

2) Building Encryption Into TCP: TCPcrypt [60] is a pro-
posal to allow a client to negotiate encryption for every connec-
tion, but fall-back to traditional TCP if a server does not support
this. TCPcrypt negotiation uses a TCP option and requires
1 extra RTT to exchange cipher material (in a separate channel
to the TCP data) (see Table I).

A new TCP connection can resume a TCPcrypt session in
1 RTT, by exchanging new keys piggy-backed on the initial
exchange in the TCP SYN packets. TCPcrypt has not (yet) been
designed to reduce latency further when resuming a session,
by carrying data encrypted with the new keys on the SYN
packet.

3) Bootstrapping Security From the DNS: Minimal latency
networking (MinimaLT [54]) provides an example of a ‘clean-
slate’ approach that requires modifications to the client, the
server and the DNS. The data server arranges for the DNS to
provide an ephemeral public key when a client resolves its name
in the DNS. The need to regularly update the server’s ephemeral

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2162 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

public keys requires the addition of an ephemeral key upload
service to the DNS. Petullo et al. [54] describe how clients
and servers would initiate the necessary long-standing secure
connections with the directory service and the ephemeral key
upload service. This change has the benefit of 0 RTTs for a
client to establish a secure session with a data server. However,
even the Domain Name System Security Extensions (DNSSEC)
have proven hard to deploy. Therefore choosing to require a
different security framework around the DNS may present a
tough deployment challenge.

A Snap Start client (Section III-B1b) could obtain its prior
knowledge of the server’s cryptographic details from the DNS,
but Snap Start is less prescriptive about precisely how to get this
pre-requisite information.

C. Packet Loss Recovery Delays

A range of Internet transport services have been defined.
Many transports such as TCP and SCTP offer an end-to-end
reliable service. Other applications choose to use a UDP or
UDP-Lite [90] transport, and then implement loss recovery
methods in the application itself. Another group of applications
require some form of congestion control, but seek to bound
latency. Such applications may utilize Datagram Congestion
Control Protocol (DCCP [62]) to provide a range of pluggable
congestion-control algorithms (but DCCP has proved hard to
deploy).

Transport-layer error/loss control can be a source of latency,
especially when the data traverses a link with appreciable
packet loss/corruption due to link errors and/or a heavily
loaded network bottleneck suffering congestion. Measurements
reported in Flach et al. [91] show that Web flows experiencing
loss can see a fivefold increase in average completion time,
making loss recovery delays a dominating factor for Web
latency.

Three methods may be used to recover a loss: retransmission,
redundancy and loss concealment.

A retransmission method uses a control loop that detects
loss/corruption and retransmits all missing packets. When
packet ordering needs to be preserved, this also implies head-
of-line blocking at the receiver to reorder the retransmitted
data (see Section VI-B). When the retransmission fails for
any reason (e.g., subsequent further loss), it often requires a
retransmission timer to trigger (incurring further delay). Re-
transmission may be implemented at the link (e.g., in a wireless
or modem link driver) and/or at the transport layer (e.g., within
TCP or SCTP). Implementing link layer retransmission can
reduce latency (recovery may be faster), but may also result in
more jitter to time-sensitive flows, which may not even need
reliable delivery. Also poorly designed methods could incur
unnecessary retransmission by the transport protocol [92].

Redundancy may be implemented as simple packet dupli-
cation at the sender (e.g., sending multiple copies of a single
control packet) or by coding a combination of packets using
Forward Error Correction (FEC). FEC enables a trade-off be-
tween decreased capacity and enhanced reliability, and addi-
tional processing at the sender and receiver. FEC encoding and
decoding is typically applied to blocks of data, that can incur

latency. On a link, correction codes can achieve a statistical
guarantee of reliability with a bounded additional processing
delay. In contrast, FEC at the network and transport layers (e.g.,
transport packet FEC is widely used for high quality video [93])
usually uses erasure codes to encode groups of packets.

A combination of the three loss recovery methods, further
outlined below, may be required to achieve a tradeoff between
processing, reliability and delay.

1) Application Tolerance to Loss: The set of applications
that require all delivered data to be uncorrupted, but do not
require loss-free transmission or ordered delivery can use the
services offered by UDP and DCCP. This can save signifi-
cant time when loss is experienced by removing the need to
reliably detect loss, retransmit packets, and reorder the data
(Section VI-B).

Transport protocols that enable partial reliability can allow
an application to conceal rather than retransmit/correct any
network loss/corruption, e.g., prediction of missing video con-
tent, or suppression of corrupted voice samples. Stewart et al.
[94] provide a full framework for a partially reliable service in
SCTP, giving a timed reliability service as an example. Methods
have also been proposed as enhancements to TCP. Mukherjee
and Brecht [95] introduced the concept of data having a useful
life time with Time-Lined TCP, allowing reliability to be traded
for reduced latency. McCreary et al. [96] exploit application
tolerance to loss (and not delay) using a receiver-only TCP
modification.

Where a network path is error-tolerant (e.g., some radio links),
the UDP-Lite or DCCP transports can be configured to allow
the application to appropriately handle errors in the transport
bit stream. Concealing errors can eliminate additional delay.

2) Reduce Packet Loss Detection Times: There are a num-
ber of proposals that seek to detect loss earlier for reliable
transports. Hurtig et al. [97] recommend updating the TCP
and SCTP retransmission timeout (RTO) timer to reduce the
latency from detecting loss with short or application-limited
flows. Early Retransmit [98] modifies TCP and SCTP when
the congestion window is small to more quickly decide that a
packet has been lost, thus reducing the delay associated with a
timeout. The basic idea of early retransmit (Fig. 11), is to allow
the TCP Fast Retransmit to be triggered by a number of dupli-
cate acknowledgements smaller than the standard value (three).
Mellia et al. [99] seek to avoid TCP RTO expiry by carefully
segmenting TCP data, to try to always have at least three seg-
ments in-flight, enabling Fast Recovery. Dukkipati et al. [100]
and Flach et al. [91] propose Tail Loss Probe, a modification
to TCP to avoid delay when the end of a packet burst is lost.
Instead of waiting for a RTO, the last packet is retransmitted
after about 2 RTTs as a probe to trigger Fast Recovery based on
SACK/FACK (selective/fast acknowledgement).

3) Combining Redundancy and Retransmission: Redun-
dancy can be added to reliable link and transport protocols to
avoid delays due to loss detection and recovery. This technique
has been long-used on radio links forming a class of methods
known as ‘hybrid ARQ’ (see Section IV-D for a discussion on
link FEC).

Some researchers have also proposed using packet FEC
combined with TCP. These approaches trade network capacity

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2163

Fig. 11. Early retransmit for TCP or SCTP.

to reduce/eliminate retransmission delay when reliable in-
sequence delivery is required.

LT-TCP [101], [102] proposed a sender and receiver update
to provide a proactive FEC mechanism based on the end-to-end
packet erasure rate to minimize the need for retransmissions,
and reactive retransmission with FEC to reduce the risk of TCP
timeouts during retransmissions. A similar approach is also
suggested in Flach et al. [91].

Evensen et al. [103] presented Redundant Data Bundling
(RDB), with a sender-side-only modification to TCP that re-
transmits unacknowledged data redundantly with new data as
long as the packet size does not exceed the network maxi-
mum segment size (MSS). For applications that produce small
packets, such as online games, this often avoids the need
for retransmissions by timeout, reducing the observed latency
upon loss.

4) Explicit Congestion Notification: Loss within a packet
network is not only used to remove data from the network to
alleviate congestion, but senders deliberately increase their rate
to induce loss as a transport signal they can use to regulate
their rate. There are also multiple other reasons why a packet
might not (yet) have appeared at the receiver, e.g., re-ordering,
transmission errors, packet size errors, routing errors, policy
violation. Explicit Congestion Notification (ECN [63], [104])
is a method that can allow IP-aware equipment (routers, fire-
walls, etc.) and other lower-layer devices [105] to propagate
an unambiguous congestion signal via a field in the IP packet
header. This reduces the wait needed to determine that a gap
in a sequence of packets can be considered as a loss, not just
re-ordering. It also removes the wait needed for a subsequent
retransmission (see Section III-C2).

ECN requires some form of active queue management to
detect early build-up of queues. Depending on the equipment
configuration, ECN can also help to reduce delay in other
ways; these are discussed in Section IV-F6 and Section IV-F7c
concerning techniques based on data centre TCP (DCTCP).

Fig. 12. Combined effect of the Nagle and delayed-ACK algorithms on the
latency of a request-response transaction, where the size of the request is
over one but under two full-sized segments. (a) Due to the Nagle algorithm,
B delays the second segment that completes the request until it receives A’s
acknowledgement of the first segment of the request. However, A delays this
ACK until its delayed-ACK timer fires. Therefore, completion of the exchange
is extended by roughly 1 RTT plus the duration of the timer. (b) When B uses
modified Nagle [108] or disables Nagle completely, it send both segments of the
request without waiting for an ACK, so the exchange only takes roughly 1 RTT.

D. Message Aggregation Delays

Transport protocols such as TCP may aggregate messages
(carrying either upper-layer data or protocol signals) to reduce
the number of IP packets sent. Thus, the focus of message merg-
ing is bandwidth efficiency. Two complementary techniques are
commonly used by TCP for this purpose:

• The Nagle algorithm [106] tries to limit the amount
of small data-carrying packets that are sent (i.e., TCP
segments of size < MSS bytes). The algorithm delays
the sending of a small segment while a previously-sent
segment has not been acknowledged. The goal is to try
to coalesce small blocks of application data into a larger
block than can be sent in a single packet, instead of
sending as many packets as data blocks—i.e., transmission
of the first small block is delayed in the hope that the
application may produce more data to send while waiting
for an ACK.

• The delayed ACKs algorithm [107] tries to limit the
amount of pure ACK messages (i.e., containing no data),
either by piggybacking an ACK signal on a data-carrying
segment, or by sending a pure ACK only for every two
full-sized data segments. A timer—as high as 200 ms in
many systems—ensures that an ACK is always eventually
sent even if no data is flowing in the reverse direction.

Both mechanisms trade latency for bandwidth efficiency,
but when used in combination they may give rise to severe
additional delay [109]. This issue is illustrated in Fig. 12(a),
for a request-response transaction where the size of the request
is over one but under two full-sized segments.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2164 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

There are essentially two ways to avoid such latency penalty.
First, the Nagle algorithm can be turned off by latency-
sensitive applications via a standard socket option (often called
TCP_NODELAY). Second, the TCP sender can implement a
variant [108] of the Nagle algorithm, where transmission of
a small segment is delayed only if the previously-sent, unac-
knowledged segment is also small. The effect of either of these
two fixes is depicted in Fig. 12(b).

IV. DELAYS ALONG TRANSMISSION PATHS

This section examines the delays encountered by a single
packet as it travels along the communication path between
endpoints, i.e., the flight latency from endpoint transmission
to endpoint reception. The flight latency is the sum of delays
due to: A) Signal propagation delay, B) Medium acquisition
delays, C) Serialization delay, D) Link error recovery delays,
E) Switching/forwarding delay, and F) Queuing delay. The
following subsections detail these sources of delay and survey
techniques for reducing them.

A. Signal Propagation Delay

Electromagnetic waves travel about 300 mm per nanosecond
in air, slightly slower than the speed of light in vacuum. In
guided media the propagation speed is slower, around 200 mm
per nanosecond, and slightly slower in fiber than in copper.
The propagation delay is linearly proportional to the length of
the cable, or, in the case of an unguided transmission medium
(like air), the shortest distance between the transmitter and the
receiver. The distance that a signal can travel is constrained by
the attenuation in the transmission medium. If the distance is
too long, an optical signal needs to be amplified or an electrical
signal regenerated, incurring delay. An amplifier or regenerator
that needs to convert an optical signal to an electrical one, will
add significant delay, while an all optical amplifier or regenera-
tor will incur almost no extra delay [110]. Techniques to further
reduce propagation delay include making the link path shorter
and using a medium which propagates the signal more quickly.

1) Straighter Cable Paths: Current cables tend to follow
the easiest path from one location to another, often alongside
railway lines or roads, since rights of way are easier to obtain
and a path through the land has already been cut. A straighter
route would lead to lower propagation delay and potentially
fewer signal repeaters.

2) Higher Signal Velocity: While the speed of transmission
is fixed for a medium, a hollow core fiber (also known as hollow
core photonic band gap fiber or HC-PBGF) may decrease
latency and also offer significantly higher bandwidth than con-
ventional monomode fiber. This is typically constructed from a
bundle of glass fibers with the central ones missing (Fig. 13).
Although the signal propagates by diffraction through the fiber
cladding as well as the hollow core, signals propagate at close
to the speed of light in air.

There are niche commercial applications using hollow core
fiber, however, the loss levels are still unusable for telecom-
munications. By March 2012, losses of 3.5 dB/km had been
achieved [111], down from 13 dB/km in 2003. Further research

Fig. 13. Cross-section of a hollow photonic crystal fiber (PCF). Source: NKT
Photonics.

is required to reach 0.2 dB/km (the performance of conventional
fiber). Until this is achievable, overall latency is higher due to
the need for repeaters every 7 km instead of every 120 km.

3) Higher Velocity With Straighter Routes: Point-to-point
microwave links are increasingly being deployed to transmit
data with less delay than fiber, e.g., between financial centers. It
is easier to achieve a straighter route with microwave, because
planning permission is only required for the towers along the
route instead of for laying fiber the entire length of the route.
This also enables obstacles such as roads, buildings, lakes and
rivers to be overcome with relative ease. However the signal
experiences far higher losses than for fiber and weather can
affect the signal, therefore, many microwave links need a fiber
backup.

B. Medium Acquisition Delays

Links can use Medium Access Control (MAC) to control
access to a shared medium, which can incur additional link
latency. While most wired links use a dedicated point-to-point
interconnect, for wireless media, use of a shared radio resource
is common (e.g., wireless, cellular mobile, satellite). MAC
techniques are also used in shared access networks and for
some LAN technologies to share the wired capacity, e.g., data
over cable (DOCSIS) and passive optical networks (PON). The
design of the MAC can impact the link latency, for example
[112] shows that in GPON, the dynamic bandwidth allocation
(DBA) mechanism can incur a delay of up to 30 ms when not
efficiently done.

There are several fundamental transmission techniques for
channel access, i.e., space division multiple access (SDMA),
time division multiple access (TDMA), frequency division
multiple access (FDMA) and code division multiple access
(CDMA)/spread spectrum multiple access (SSMA). Each tech-
nique has merits for a specific scenario and type of media. In
general, MAC mechanisms may be classified according to the
scheduler and multiple-access channel schemes. Transmission
latency depends more on the MAC mechanism, than on the
channel carrier technique. Reference [113] divides the tech-
niques in three classes: fixed assignment, demand assignment
and random access.

Fixed assignment (TDMA and FDMA) provides access to
predefined slots (time or frequency), yielding a predictable
access latency. However, compared with the other assignment

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2165

classes, TDMA sources can incur higher latency waiting for
their assigned time slot and senders are unable to make use
of any unallocated time slots. FDMA sources are restricted to
their assigned portion of the frequency spectrum so, similarly,
senders are unable to use capacity that has not been assigned.

Demand assignment protocols divide capacity based on re-
quests from devices that generate allocations. A MAC protocol
may be centralized or distributed, using polling or reservation
for requests. The latency to access the channel comprises the
request, allocation and transmission opportunities; the resulting
delay depends on: the choice of technique, system configuration
and level of traffic. In some systems, requests are not reliably
sent, adding further delay if these are lost. Delay may also be
incurred if a resource manager determines that a request may
be denied or only partially honored, postponing transmission to
a later allocation cycle. Cellular mobile [114] and broadband
satellite are examples of systems based on such protocols.
Sooriyabandara and Fairhurst studied the delay impact on TCP
in satellite systems [115].

Random access or contention-based systems operate without
allocating dedicated slots/frequencies to a specific terminal.
Using random access, transmissions are not coordinated and
mostly use fully-distributed access policies, although transmis-
sion opportunities may be synchronized to centralized timing to
improve stability and utilization. This can provide low latency
access to a lightly loaded channel, but latency can increase if
there are collisions and a loss recovery mechanism is invoked
(e.g., back-off or redundant transmission). In adaptive channel
sensing random access, the network device first senses the
channel to schedule its message for transmission and better
avoid collisions; this is achieved without access coordination
with other devices. Wireless systems typically are designed
to be adaptive, but the longer propagation delay in satellite
broadband often requires other contention resolution methods.

The IEEE 802.11 MAC protocol [116] has become the
de facto layer-2 standard for wireless local area networks
(WLAN). From 802.11e and 802.11n frame aggregation was
introduced, defining two techniques for a device to aggregate
several MAC frames into a single larger frame, which can
reduce delay by reducing the number of contention based media
accesses required to send the data. Aggregate MAC Service
Data Unit (A-MSDU) allows multiple MSDUs of the same
traffic class to be concatenated in a single MPDU destined
for a receiver where the sub-frame header corresponds to the
same MAC header parameters (RA and TA). In contrast, an
Aggregate MAC Protocol Data Unit (A-MPDU) aggregates
multiple MPDUs in a single PHY (physical) protocol data
unit (PPDU) frame, consisting of sub-frames, each with their
own MAC header. In addition, it requires the use of block
acknowledgement or Block Ack (BA), whereas instead of
transmitting individual ACKs for every MPDU, a single BA
frame containing a bitmap field maps and accounts for several
MPDUs to be acknowledged.

Frame aggregation improves efficiency by reducing the over-
head from MAC headers. Skordoulis et al. [117] and Lin and
Wong [118] show that dramatic throughput efficiency gains can
be achieved using A-MSDU and A-MPDU, whereas there is an
optimal aggregate frame size in respect of the noise level of the

channel. There is a tradeoff between processing time required
to compute the aggregates and increase in overall delays, yet
Shen et al. [119] show that adaptive frame aggregation can
deliver the performance required for a service with a stringent
delay requirement, such as VoIP and interactive gaming.

Wireless rate adaptation mechanisms seek to determine the
optimal send rate for the current conditions of a varying wire-
less channel. How well they perform can significantly impact
the end-to-end delay of a wireless segment. Early schemes
were based on frame loss or Signal-to-Noise Ratio (SNR),
with newer techniques combining these signals and MAC
control mechanisms to determine the rate of successful frame
transmissions [120].

In summary, MAC protocols can introduce significant com-
plexity to share access to the medium. These techniques are
often optimized for channel efficiency or throughput, but can
also be appropriately optimized to avoid unnecessary latency,
and can offer prioritized access to latency-sensitive traffic.
However, achieving both at the same time or without the
complexities of traffic classification is still an open research
issue.

C. Serialization Delay

Serialization/deserialization is the process of getting data
from the network card buffer to the wire or vice-versa. At
each end of a link serialization delay SS = frame-size

line-rate can be
introduced at the sender, and deserializing delay SD = frame-size

line-rate
at the receiver. This delay can vary with the path conditions
(e.g., adaptation of the rate of a wireless link according to
the channel condition). Poor rate adaptation can significantly
increase latency [121], [122].

Along the forwarding path each intermediate network device
i introduces a deserialization and serialization delay SD(i)+SS(i)
every time a frame is read from the wire into memory then
written from memory to the wire (with routing/switching in
between). Serialization/deserialization introduces delays pro-
portional to the speed of the interface. The delay can be reduced
either by increasing the physical layer speed or reducing the
number of links that a packet needs to traverse, as shown in
virtualizing chains of network functions (see Section II-D4).

Other forwarding methods such as cut-through and worm-
hole switching [123] reduce serialization/deserialization. Cut-
through [124] avoids waiting for a whole packet to be transmit
buffered, as in store-and-forward switching; instead, a packet
is forwarded as soon as the destination address is identified,
thus at each endpoint serialization/deserialization delays re-
main the same, SS(1) =

frame-size
sender-line-rate and SD(N) =

frame-size
receiver-line-rate .

But at each interior hop, cut-through can reduce the path
routing/switching serialization delay to SS(i) =

header-size
sender-line-rate and

deserialization SD(i) =
header-size

receiver-line-rate , thus depending only on
the time to serialize the header information. However, in cut-
through switching frame errors cannot be detected until the end
of the packet, thus corrupted packets are forwarded and could
impact network performance.

In wormhole switching, a packet is divided into smaller
pieces called flow control digits (or flits). A flit is usually sent
from i to i+1 only if the device i+1 has sufficient buffer space

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2166 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 14. End-to-end (i.e., TCP-based) versus link-level retransmission. Lack
of a link-layer ACK on the first hop triggers local retransmission of the frame
carrying TCP segment B.

for the flit. Similar to cut-through switching, once the header
flits are received forwarding can be set up, however if the output
channel is busy, flow control blocks trailing flits—temporarily
buffering them back along the established path toward the
sender.

Wormhole switching requires fewer I/O buffers, it enables
more efficient port utilization with the implementation of vir-
tual channels, thus reducing latency compared to store-and-
forward switching. If intermediate network devices do not
discard packets, more reliable transmission is achieved (packets
are only lost due to bit errors). On the other hand this introduces
more complexity as it may cause deadlocks. Wormhole switch-
ing is mainly used in multiprocessor systems in Network-On-
Chip systems (NOCs [125], see Section VI-C).

D. Link Error Recovery Delays

Link error recovery delays depend on the compromise made
between the link capacity, physical layer coding to avoid errors
and link retransmission to correct errors. Shannon [126] showed
that for a given available signal bandwidth, the capacity of a link
is limited by the channel quality. In simple terms, conservative
channel coding can reduce the probability of errors, but long
codes can also increase packet serialization delay.

Reliable communication (e.g., using TCP) over a path con-
taining an error-prone link (e.g., a radio-link) can result in
occasional appreciable corruption/loss of packets. Link retrans-
mission could detect and recover from channel corruption,
but incurs delay (i.e., at least 1 additional link round trip of
delay—at least 0.5 to notify the packet/frame loss and 0.5 to
resend the packet/frame to the link receiver). The loss could
also be recovered by end-to-end retransmission by a reliable
transport, but this would incur an additional delay of at least
1 times the end-to-end path RTT. In practice, the link round
trip delay is often much less than the path RTT, and often also
supports selective retransmission requests enabling faster loss
recovery (Fig. 14). Link retransmission complements transport
recovery (especially at times of high loss), but requires careful
design to avoid retransmission at multiple levels [92]. It can
also introduce unpredictable variation in the path latency.

Cross-layer approaches can help reduce delays caused by
the duplication of retransmission at the transport and link
layers [127], [128]. Therefore, link design needs to consider the
expectations of the types of traffic a link supports, and how that
can be optimized for overall latency.

Link FEC is widely used in both wired (e.g., DSL) and
wireless technologies to recover from physical layer errors.
FEC may be implemented using Reed-Solomon (RS) cod-
ing, although higher-efficiency codes (e.g., Low-Density Parity
Codes, LDPC) are often used on bandwidth-limited radio links.
Coding can be combined with Interleaving (I-FEC) to provide
better resilience to bursts of errors (i.e., impulse noise protec-
tion (INP) for interference).

There is an intrinsic trade off when choosing interleaving
parameters: a more robust scheme with higher delay, or one
with less protection but less latency. In DSL, as in radio links,
this has a direct impact on the delay of the transmission layer.
Interleaving in DSL provides INP protection using I-FEC. A
typical INP overhead protection setting introduces 8 ms delay in
the downstream direction and a 0 ms delay, with no protection,
in the upstream direction [129] over the physical line (see
Section IX-D3).

Another way to reduce the need for end-to-end recovery (and
hence latency) is to improve the link channel quality (i.e., the
signal to noise ratio). This reduces the need for link ARQ or the
delay associated with FEC and reduces the latency impacts of
wireless rate adaptation (see Sections IV-B & IV-C). This could
involve replacing a microwave link with an optical fiber link, or
changing the coding and modulation schemes on a radio link.

E. Switching/Forwarding Delay

The links along a network path are connected by network
devices, such as core switches and routers. Transit through each
device adds to the path latency. There are a number of different
network device architectures: input buffered, output buffered,
combined input/output buffered, etc., each with different la-
tency characteristics [130]. In a typical design, the forwarding
engine examines each packet header to select the appropriate
output link. The latency incurred, SL, is not a constant, but
depends on the complexity and the number of rules processed
and the speed at which entries in the forwarding table may be
accessed. It is often possible to provide a minimum latency, and
usually also a maximum latency [131].

Once the output link has been selected, the packet passes
through the switching fabric with latency SF . In a device with
several cards (or several racks), SF will also depend of the
relative location of the input and output interfaces. The total
latency through the fabric may be:

Sbase = SL +SF (1)

In the classical store-and-forward architecture a packet can
be queued at the input waiting for the forwarding engine,
introducing a latency of SI , and/or at the output when there is
contention, incurring SO of additional delay (Section IV-F). In
addition to this queuing delay in the intermediate network de-
vices, deserialization SD and serialization SS introduces further

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2167

delay that can be addressed using different mechanisms (see
Section IV-C). Hence the total switching latency will be:

Stotal = SD +SI +SL +SF +SO +SS (2)

Software Defined Networking (SDN) allows an operator to
implement a set of rules, and can be expected to increase the
load on the rule engine, increasing SL [132]. SDN controller
performance is an area of active research [133]. Sbase can be
reduced by increasing the switching fabric speed, lowering SF .

F. Queuing Delay

Delays from packet queuing at devices along the end-to-
end path, in general, contribute the largest delays to the flight
latency. This latency originates from contention for either
the switching fabric or the output interface (SI and SO in
Section IV-E). Provisioning sufficient resources will always re-
duce (or eliminate) contention, but at the expense of decreased
link utilization. Input and/or output buffering is needed to en-
sure high utilization with bursty network traffic, but inevitably
leads to building queues. The overall effect of queuing delay is
complex, with buffering often present in each device and each
network layer or sub-layer. In this section the term buffer will
refer to the resources available to queue packets, and the term
queue will refer to the amount of buffer space being used.

Managing queues for quality of service metrics, includ-
ing latency, was a very active area of research until Dense
Wave Division Multiplexing (DWDM) made core network
over-provisioning a cost-effective approach to support latency
sensitive traffic [134]. More recently, latency and network
buffering issues have again received attention through the
efforts of Gettys [135], who coined the term bufferbloat to
describe the over-abundance of buffering resources in several
parts of typical Internet paths. Large queues can induce high
latency at any congested point on the end-to-end path. Currently
this is mainly an issue at the edge of the network [136], [137],
but the problem will increasingly affect the core as network
access speeds increase.

Efforts to reduce queuing delays along the path can be
divided into seven approaches: 1) Flow and circuit schedul-
ing, 2) Reducing MAC buffering, 3) Smaller network buffers,
4) Packet scheduling, 5) Traffic shaping and policing, 6) Queue
management, and 7) Transport-based queue control.

1) Flow and Circuit Scheduling: A network device can
avoid queuing delays by directly connecting its inputs and
output ports (as in, e.g., optical switches used to handle the
high rates in the core of the Internet or in data centers [138]).
There are many types of optical switching [139], but two main
categories: Circuit-switched (wavelength, fiber or time slot)
and connectionless (packet and burst). The former requires the
a priori set up of an all optical path from ingress to egress,
resulting in less statistical multiplexing [140]. However, after
a path has been established, there is no S[IOL] delay and SF

has also potentially been reduced (see Section IV-E). For data
travelling along this path, delay will be the speed of light in the
fiber times the distance. If such a path is not available, data may
have to wait for a path to be created, or may have to be routed

via another egress, resulting in a temporary increase in latency
and jitter.

Since only small optical buffers are currently feasible, de-
signs for optical burst and packet switches have almost no
buffering delay (S[IO]). Currently, optical burst switching is the
most practical of the connectionless optical switching tech-
niques [141], [142]. In burst switching, packets destined for
the same egress are collected in a burst buffer at the ingress
and sent in a group. This reduces or removes the need for
buffering in the network, but can increase the overall end-to-end
latency due to the additional ingress buffering. Optical packet
switches are still an area of active research, and developments
may help improve latency compared to burst switching because
they do not require the extra ingress buffering of optical burst
switching.

Both burst and packet switching may involve tuning
wavelength converters, configuring Micro-Electro-Mechanical-
System (MEMS) switches, and/or wavelength selective
switches. Depending on the architecture, switching delays of
the order of 100–300 ns may be achievable resulting in these
being no slower than electrical switches [138].

2) Reducing MAC Buffering: Buffering at or below the
MAC layer is present for a range of reasons, including:
traffic differentiation; header compression; capacity request/
medium access (Section IV-B); FEC encoding/interleaving
(Section III-C); transmission burst formation; handover and
ARQ (Section III-C). While systems are typically designed
for common use-cases, a large number of independently main-
tained buffers can add significant amounts of latency in ways
that may not be immediately obvious [135], [143]: e.g., when
traffic patterns change, the radio resource becomes congested,
or components of the system are upgraded revealing buffering
in a different part of the network stack.

Network devices have moved from a position where under-
buffering was common to where MAC buffer bloat can now
significantly increase latency [144], with latencies of many
seconds not uncommon in an un-optimized system.

Delays can also result as a side effect of other link protocols.
For example, some Ethernet switches implement a type of back
pressure flow control using IEEE 802.3X PAUSE frames [145].
If the input queue of a downstream switch is full, a switch
can send a PAUSE frame to cause upstream devices to cease
transmission for a specified time. This mechanism can avoid
loss during transient congestion, but sustained overload can
result in a cascading effect that causes the buffers of switches
along a path to be filled—dramatically increasing the path
latency [146]. Anghel et al. [147] show that use of PAUSE
frames in data centers can improve flow completion times, but
that care is needed in setting the thresholds in switches and
ensuring that there is end-system support. Priority Flow Control
(PFC) is an enhancement that can reduce delay for latency
sensitive flows by allowing the PAUSE to specify a particular
class of traffic in IEEE 802.1Qbb [148].

In general, unnecessary buffering below the IP level needs
to be eliminated to improve latency. Where possible, pack-
ets should be buffered in the IP layer using Active Queue
Management (AQM) methods [149] (Section IV-F6). This can
require a redesign of the architecture to enable coordination

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2168 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

between protocol entities, avoiding the pitfalls of direct im-
plementation of a large number of independent layers and
construction of individually buffered “pipes/streams” across the
lower layers [135], [143], [150], [151]. In the Linux kernel since
Aug. 2011, Byte Queue Limits (BQL) has significantly reduced
delay within network interface hardware, but without radically
altering inter-layer co-ordination [152]. It is hard to size a hard-
ware transmit buffer statically, because it consists of a queue of
pointers to packet buffers that may each range in size from a
few bytes to 64 KiB. So BQL does not attempt to reduce this
hardware buffer size. Instead it separately maintains a record
of bytes queued and it dynamically adapts a byte limit to track
the variation in queue size using a new Dynamic Queue Limits
(DQL) library [153]. Whenever the bytes queued exceeds the
limit, further queuing from the upper layers is blocked. This
minimizes the lower layer queue, and pushes any larger queue
up into the network stack where AQM can be applied.

3) Smaller Network Buffers: The most effective means of
reducing queuing delay is to reduce the size of buffers in each
device along the end-to-end path, this limits the maximum
queue size. An early buffer dimensioning rule-of-thumb [154]
recommended that buffers should be sized proportional to the
line rate times the RTT (B = RTT×C), the Bandwidth Delay
Product (BDP), but this is now known to be excessive.

Appenzeller et al. [155] investigated whether BDP sized
buffers are required for high utilization in core routers, and
showed that core router buffers can take advantage of a high
degree of statistical multiplexing and reduce BDP sized buffers
by a factor of

√
n, B = RTT×C√

n , where n is the number of
concurrent flows on the link. Further reductions are possible
if the full utilization constraint is relaxed, though Dhamdhere
and Dovrolis [156] raised concerns of higher loss rates and thus
lower TCP throughput. The work by Appenzeller et al. and
an update [157] spawned a number of studies and proposals.
Vishwanath et al. [158] surveyed and critiqued much of this
work and conducted experiments with mixed TCP and UDP
traffic. They concluded that small buffers make all-optical-
routers more feasible. As well as reducing latency, Havary-
Nassab et al. [159] showed that small buffers make the network
more robust against Denial-of-Service (DoS) attacks.

Although work on reducing buffer sizes in the core net-
work is necessary and important for the future, most current
congestion is closer to the network edges, where there is
not a high degree of statistical multiplexing. Chandra [160]
divides congestion into packet-level and burst-level congestion.
Packet-level congestion only requires small buffers, however
congestion due to traffic burstiness and correlations requires
much larger buffers. For this reason, small buffers at lightly
multiplexed network edges require traffic to be smoothed or
paced to avoid burst-level congestion and allow smaller buffers
(Sections IV-F5 and IV-F7).

Optimizing buffer sizes for various scenarios is still an area
of research. A trade-off will remain between latency, utiliza-
tion and packet loss—with latency expected to become more
critical.

4) Packet Scheduling: Packet scheduling can also impact
latency. A scheduling mechanism allows a network device or
endpoint to decide which buffered packet is sent when multiple

packets are queued. Internet hosts and network devices have by
default used first-in-first-out (FIFO) scheduling, which sends
the oldest queued packet first. This can cause head-of-line
blocking when flows share a transmission link, resulting in
all flows sharing an increased latency. There are, however,
a wide variety of queue scheduling mechanisms and hybrid
combinations of mechanisms that can either seek to ensure a
fair distribution of capacity between traffic belonging to a traffic
class/flow (class/flow isolation), or to prioritize traffic in one
class before another. These methods can reduce latency for
latency-sensitive flows. This section does not seek to explore
all scheduling methods, but will highlight some key proposals.

a) Class based: Some scheduling mechanisms rely on
classifying traffic into one of a set of traffic classes each as-
sociated with a “treatment aggregate” [161]. Packets requiring
the same treatment can be placed in a common queue (or at least
be assigned the same priority). A policy apportions the buffer
space between different treatment aggregates and a policy
determines the scheduling of queued packets. Different classes
of traffic may receive a different quality reflecting their latency
and other requirements, so scheduling with this knowledge can
have positive impacts on reducing latency for latency-sensitive
flows.

A router or host-based model implements scheduling in in-
dividual routers/hosts without reference to other devices along
the network path. This is easy to deploy at any device expected
to be a potential bottleneck (e.g., a home router), although it
does not itself provide any end-to-end quality of service (QoS).

A more sophisticated model aligns the policies and classes
used by the routers across a domain, resulting in two basic
network QoS models: The differentiated services model [162]
aligns the policies configured in routers using the management
plane to ensure consistent treatment of packets marked with
a specific Differentiated Services Code Point (DSCP, [163])
in the IP packet header (i.e., devices schedule based only on
treatment aggregates). In contrast, the integrated services model
[164] uses a protocol to signal the resource requirements for
each identified flow along the network path, allowing policies
to be set up and modified in real-time to reflect the needs of
each flow. Both models can provide the information needed
to control the delay of traffic, providing that delay-sensitive
traffic can be classified. The integrated services model is best
suited to controlled environments, e.g., to control latency across
an enterprise domain to support telepresence or other latency-
sensitive applications.

b) Flow based: Flow based queuing allows a scheduler
to lessen the impact that flows have on each other and to
discriminate based on flow characteristics. A key example
of this is Fair Queuing (FQ), proposed by Nagle [165] and
Demers et al. [166], which aims to improve fairness among
competing flows. This ensures that queuing delays introduced
by one (possibly misbehaving) flow do not adversely affect
other flows, achieving fairness. FQ has been adapted and ex-
tended in many different ways including: weighted FQ [166],
[167], and practical approximations such as Round Robin (RR)
scheduling and Deficit RR (DRR). In practical implementa-
tions, there may be a limit to the number of queues that can
be implemented, hence stochastic fair queuing (SFQ [168]) and

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2169

Fig. 15. Sharing of available capacity by two flows, illustrating the difference
between FIFO, FQ/RR and EDF scheduling. Flow F1 has deadline D1, and flow
F2 had deadline D2.

similar methods have been proposed to eliminate the need for a
separate queue for each traffic flow.

Per-flow classification requires a flow classifier to discrim-
inate packets based on the flows to which they belong and
deduce their required treatment. In the router or host-based
model this function is performed at each router and requires
visibility of transport protocol headers (e.g., protocol and port
numbers), whereas in the Differentiated or Integrated models
visibility is required at the edge of the QoS domain. When
tunnels are used, all tunnel traffic is generally classified as a
single flow (an exception could be the use of the IPv6 Flow
Label to identify subflows). This can add latency by assigning
all traffic that uses a VPN tunnel to the same queue, besides the
obvious processing cost of encryption and decryption.

c) Latency specific: Some schedulers schedule packets to
achieve a low or defined latency. The simplest is Last-In-First-
Out (LIFO [169], [170]), which minimizes the delay of most
packets—new packets are sent with a minimum delay at the
expense of packets already queued. Unfortunately, this method
also maximizes the delay variance and reorders packets within
a flow.

Deadline-based schemes attempt to bound the latency of a
queue, e.g., Earliest Deadline First (EDF [171]), where jobs
(or packets [172]) are scheduled in the order of their deadline.
The principle of EDF scheduling is illustrated in Fig. 15, for
two flows with different deadlines; both flows can meet their
deadlines if the flow with the earliest deadline is scheduled first.
Unfortunately, these methods fail to provide good performance
under overload.

Shortest Queue First (SQF) is a flow/class based scheduler
that serves packets from the flow/class with the smallest queue
first. It has been proposed for reducing latency in home access
gateways [173]. Carofiglio and Muscariello [174] show that
the SQF discipline has desirable properties for flows that send
less than their fair share, such as thin latency-sensitive flows
and short flows, at the expense of bulk throughput-sensitive
flows.

d) Hierarchical scheduling: In many networks it is nor-
mal to create a hierarchy of scheduler treatments, in which some
classes of traffic are given preferential or worse treatment by
the scheduler, to achieve different treatments for the traffic. For
example the Expedited Forwarding (RFC 3246) differentiated
services class assigns a treatment that offers low loss and low
latency. Class-based queuing [175], hierarchical packet fair
queuing [176], hierarchical fair service curve [177] and 802.11e

QoS enhancements for WLANs [178] provide such methods.
Any priority-based algorithm needs to correctly classify the
traffic in a way that guarantees the required treatment. This
typically requires a policing (or traffic-conditioning) function
to prevent misuse. In the integrated and differentiated services
model this conditioning may be provided at the domain edge
[179].

5) Traffic Shaping and Policing: Traffic shapers smooth
traffic passing through them using a buffer to limit peak trans-
mission rates and the length of time these peak rates can be
maintained. While shaping can help prevent congestion—and
therefore delay further along the path—, it does so at the
expense of delay introduced at the shaper. The foundational
traffic shaping algorithms are the leaky bucket algorithm
(Turner [180]) and the related token bucket algorithm. Traffic
shapers are used extensively in the Internet [181], though often
to reduce ISP costs rather than to reduce delays along the
path [182].

Traffic policers drop packets that exceed a specified peak
transmission rate, peak burst transmission time, and/or av-
erage transmission rate. Policing was first proposed by
Guillemin et al. [183] for ATM networks, but is still an effective
tool for managing QoS, especially latency, in the Internet.
Briscoe et al. [184] propose a policing mechanism that could be
used either to police the sending rate of individual sources (e.g.,
TCP) or, more significantly, to ensure that all the sources behind
the traffic entering a network react sufficiently to congestion, as
a combined effect, without constraining any flow individually.
This developed into the IETF Congestion Exposure (ConEx
[185]) work to enable a number of mechanisms, especially
congestion-based policing, to discourage and remove heavy
sources of congestion and the latency they cause.

6) Queue Management: Network devices can monitor the
size of queues and take appropriate action as the queue latency
builds; this is known as queue management. Techniques such
as drop tail and drop front [186] are said to be passive. In con-
trast, Active Queue Management (AQM) techniques manage
queues to achieve certain queue loss and latency characteristics
by proactively marking or dropping packets; which signal to
endpoints to change their transmission rate. AQM mechanisms
generally work in combination with scheduling, traffic shaping,
and transport-layer congestion control. Adams [187] provides
an extensive survey of techniques from Random Early Detec-
tion (RED [188]), introduced in 1993, through to the year 2011.
This section looks at more recent contributions, with a specific
focus on latency.

a) PIE and CoDel: Two current proposals aim to min-
imize the average queuing delay: Proportional Integral con-
troller Enhanced (PIE [189]) and Controlled Delay (CoDel
[190]), and more recently, a per-flow queuing version of CoDel
called FQ-CoDel.

The PIE algorithm uses a classic Proportional Integral con-
troller to manage a queue so that the average queuing delay
is kept close to a configurable target delay, with a current
default value of 20 ms. PIE does this by using an estimate of the
current queuing delay to adjust the random ingress packet drop
or marking probability. The algorithm self-tunes its parameters
to adapt quickly to changes in traffic. PIE tolerates bursts of

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2170 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 16. How Data Centre TCP (DCTCP) reduces delay without losing
utilization.

packets up to a configurable maximum, with a current default
value of 100 ms.

CoDel attempts to distinguish between two types of queues,
which the authors refer to as good queues and bad queues—that
is, queues that simply buffer bursty arrivals, and those just
creating excess delay. Although the default target delay is 5ms,
it allows temporary buffering of bursts which can induce delays
orders of magnitude larger than the target delay. Packets are
dropped or marked at deterministic intervals at the head of
a queue. Dropping/marking at the queue head decreases the
time for the transport protocol to detect congestion. Combining
this with the flow isolation of a fair queuing scheduler (see
Section IV-F4) avoids packet drops for lower-rate flows.

Both schemes attempt to keep configuration parameters to
a minimum, auto tune, and control average queue latency
to approach a target value. Both exhibit high latency during
transient congestion episodes. Use of smaller buffers would
prevent this, but this is an area that requires further research
(see [191]–[193]).

b) DCTCP and HULL: Data Centre TCP (DCTCP [194])
is illustrated in Fig. 16. It uses an AQM method that has been
designed to keep queuing delay and delay variance very low,
even for small numbers of flows including a single flow. The
method appears deceptively simple; it merely marks the ECN
field [63] of all packets whenever the queue exceeds a short
threshold.

The AQM for DCTCP signals even brief excursions of
the queue, in contrast to other AQMs that hold back from
signaling until the queue has persisted for some time (see
Section IV-F7c). Even though existing switches often only
implement RED, they can avoid introducing signaling delay by
simply setting their smoothing parameter to zero. The transport-
layer functions of DCTCP are described in Section IV-F7.

High bandwidth Ultra-Low Latency (HULL [195]) replaces
the AQM algorithm in DCTCP. It aims to keep the real queue
extremely short by signaling ECN when a virtual queue exceeds
a threshold. A virtual queue is a token-bucket-like counter that
fills at the real packet arrival rate, but drains slightly more

slowly than the real line. A growing range of commercial
equipment natively supports virtual queues, often using two
hardware leaky buckets [196].

7) Transport-Based Queue Control: A number of transport
layer mechanisms have been proposed to support low queuing
delays along the end-to-end path. Two key elements are: bursti-
ness reduction and early detection of congestion.

a) Coupled congestion control: When multiple flows that
originate from the same endpoint traverse a common bottle-
neck, they compete for network capacity, causing more queue
growth than a single flow would. Detecting which flows share a
common bottleneck and coupling their congestion control (as,
e.g., in [197]) can significantly reduce latency, as shown with
an SCTP-based prototype in [198]. Solutions in this space are
planned outcomes of the IETF RMCAT working group [199]
(see also Section V-C2).

b) Burstiness reduction: A TCP session that always has
data to send typically results in paced transmission, since the
sender effectively paces the rate at which new data segments
may be sent at, to the rate at which it receives ACK packets
for old segments that have left the network. However, this is
not always the case. TCP’s window-based congestion control
together with bottleneck queuing can result in very bursty traffic
[200]. In some implementations, the TCP max_burst function
[201] limits the maximum burst size per received ACK, hence
reducing burstiness for bulk applications.

However, not all applications continuously have data to
transmit (e.g., when a server responds to requests for specific
data chunks, or when a variable rate video session experiences
a scene change). There may therefore be periods in which no
TCP data are sent, and hence no ACKs are received—or an
application may use an entirely different transport that does not
generate an ACK for every few segments. Either of these can
result in bursts of packets, and may require explicit pacing at
the sender or a traffic shaper within the network.

Host pacing is a method that limits the burstiness of a
flow (similar to host-based traffic shaping). It can result in
smaller network queues, reduced buffering requirements (see
Section IV-F3), and also reduce the latency experienced by
flows that would otherwise be queued behind the bursty traffic
[202]. However, the effects of TCP pacing on the network
are complicated and depend on many factors (Aggarwal et al.
[203]). Wischik [204] shows that it has the potential to de-
crease stability unless buffers are small. Wei et al. [205]
conclude that the effect of pacing is generally positive, improv-
ing the worst-flow latency. Enachescu et al. [206] propose a
TCP pacing scheme that may allow network buffer sizes to
be very small, even on the order of 10–20 packets in core
routers.

c) Low threshold ECN: An explicit signal of the network
load or congestion, before, or just as, the congested queue
begins to grow provides the best signal to a transport layer.
Unfortunately, the current standard for ECN [63] does not de-
fine such a signal. Instead, ECN signals are treated equivalently
to loss signals, both when generated in the network and when
responded to by end systems.

A form of instantaneous ECN marking (see Section IV-F6)
was designed for Data Centre TCP (DCTCP [194]), which

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2171

smooths the congestion signals at the endpoints:

• End-systems smooth signals over their own RTT, avoiding
the network needing to conservatively delay signals for the
longest likely RTT, holding back information from short-
RTT flows for tens or even hundreds of their RTTs.

• The rate-response of end-systems can be proportionate to
the extent of the signals, not just a fixed conservatively
large rate reduction (i.e., halving) in response to a signal
(see Fig. 16).

In DCTCP, a congestion signal α is computed by the sender,
measuring the fraction of ECN-marked packets in a window.
DCTCP’s congestion control uses α to drive how the congestion
window, cwnd, evolves. In the absence of congestion (i.e., no
ECN marks) cwnd grows as in standard TCP, whereas cwnd
reduction is proportional to the level of congestion α; halving
the window only happens under very heavy congestion (α =
1). A DCTCP source can therefore maintain a small-amplitude
sawtooth that closely hugs the available capacity, allowing the
AQM threshold to be very short, therefore keeping delay low
and near-constant.

DCTCP was deployed by Microsoft within its Bing data
centers, and in Windows 8. The Linux implementation has been
modified slightly to work over long RTT paths. Results in [194]
show that it behaves well with the shallow buffers present in
commodity switches, and yields much fewer timeouts. Achiev-
ing both low delay and high throughput is at the expense of
slower convergence time for long flows; this is due to the less
aggressive congestion response compared to TCP.

DCTCP spawned other recent transport protocol advances
[195], [207], [208] that leverage ECN and AQM to reduce
queuing delay. All these approaches are currently restricted
to environments like data centers and private networks, where
a single administrator can ensure all endpoints and network
devices universally support ECN and where congestion signals
are responded to smoothly in all end-systems, and not delayed
in the network. There is ongoing research on how to enable
the DCTCP approach to co-exist with existing traffic in public
networks [209].

Deadline-Aware Data Center TCP (D2TCP [207]) relies
on instantaneous ECN markings and maintains an estimate
of the level of congestion α just as DCTCP. The reaction
to impending congestion is modulated according to dead-
lines: near-deadline flows back off much less (or even not
at all) compared to far-deadline flows. This is achieved by
a slight change to the DCTCP congestion response, where
α is replaced by αd , with d > 0 an indication of how far
the flow’s remaining time is from its deadline; for long flows
without an explicit deadline, d = 1 and D2TCP behaves ex-
actly like DCTCP, whereas d > 1 for flows which deadline
is near.

L2DCT (Munir et al. [208]) also draws on DCTCP, but
differs in the way the congestion window is updated. It is
an end system change that emulates a Least Attained Service
scheduling discipline, which prioritizes short flows without
a need to know their length or deadlines a priori; only the
amount of data already sent is used. The congestion response
follows that of D2TCP, but with a system of “weights” that

depend on the amount of data sent. When there is congestion,
L2DCT makes long flows back off more than short flows. When
there is no congestion, long flows increase their congestion
window more conservatively than short ones, with the amount
of increase progressively getting smaller for longer flows (down
to a minimum value).

HULL [195] leverages the ideas behind DCTCP (see
Section IV-F6). HULL aims at operating with almost-empty
buffers. Because it can leverage a virtual queue, HULL trades
bandwidth for latency; the loss of bandwidth is tunable by
adjusting the parameters of the virtual queue. HULL trades
lower latency for short flows against longer completion times
for long-lived flows. Since there is no ACK clock, HULL also
requires a pacing module at the sender to dissipate burstiness.

These proposals achieve significant improvements in latency
performance with respect to standard TCP (even when standard
TCP is used in combination with RED and standard ECN). For
instance, according to Alizadeh et al. [194], DCTCP allows
the network to carry ten times as much data (both background
and queries) while allowing an ∼80% reduction in the 95th
percentile of query completion times, with timeouts being close
to non-existent (0.3% of flows). With realistic traffic patterns,
99.9th percentiles of completion times for short flows (queries)
can be reduced by as much as ∼40%. Other proposals claim yet
larger improvements. For example, D2TCP seems to reduce the
proportion of flows missing their deadlines by as much as 75%,
compared to DCTCP, whereas L2DCT brings mean completion
times down by 50% and 95%, compared to DCTCP and TCP
respectively.

d) Delay-based congestion detection: One issue that con-
tributes to queuing latency is that congestion is often not
detected until it has already induced delay. Early detection of
the onset of congestion allows congestion controllers to reduce
their rate quickly before queues build. This could use delay-
based inference of congestion or early explicit notification
of congestion by the network. Delay based mechanisms can
directly measure the quantity that needs to be reduced. They
also do not require any specific signaling from the network.
Jin et al. [210] argue that without an explicit signal from the
network, delay is a viable congestion measure. However, de-
spite their long history (their origins stretch back to 1987 when
NETwork BLock Transfer (NETBLT [211]) was proposed,
with TCP Vegas (Brakmo and Peterson [212]) being the most
notable early proposal) delay-based congestion control mech-
anisms have proven difficult to deploy over the Internet. This
is mainly due to potential starvation by conventional loss-based
algorithms. To date, Low Extra Delay Background Transport
(LEDBAT [213]) is the only widely adopted mechanism (see
Section V-D).

Hayes and Ros [214] discuss these co-existence issues argu-
ing that delay-based congestion control should still be consid-
ered part of the solution for reducing end-to-end path latency.
Delay-based congestion control seems to require no changes
to network equipment. However, it only keeps queuing delay
low if the traffic can be isolated from competing conventional
loss-based algorithms. This could be achieved if the delay-
based approach were deployed universally in a closed network,
but in the Internet it only works if the current bottleneck

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2172 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

queue provides flow separation. Arguments for and against
flow separation are outside the scope of the present work, but
anyway, a delay-based transport implementation has to assume
that not all network queues will protect it from competing flows.
Therefore some delay-based approaches accept that they cannot
always keep delay low, and they switch to a more aggressive
mode if they detect losses (e.g., see [215]).

V. DELAYS RELATED TO LINK CAPACITIES

The available link capacity along a path as well as the way in
which the available capacity is used can contribute to the overall
latency. Whenever the link capacity is low, packet serialization
times may represent a non-negligible component of the total
latency of an end-to-end communications chain. Furthermore,
capacity is often shared and only a small proportion of the
capacity may be available to a specific flow; such is the case
when links are congested. Increasing the link capacity would
alleviate this congestion and hence reduce queuing delays.
When capacity is scarce, delays can also be shortened by
reducing the amount of information that needs to be transferred
over the network.

Due to protocol inefficiencies, increased capacity may not
necessarily yield lower latency. One reason can be TCP conges-
tion control during the initial slow-start phase, which may often
not be able to reach the available capacity before the end of a
flow, making the duration of the transmission solely dependent
on the RTT. While protocols should efficiently use available
capacity, they must also be aware of other flows, ensuring that
limited capacity is shared in a way that avoids inducing delay or
loss to the other flows. Collateral damage caused to other flows
can be limited by yielding capacity to higher priority flows or
by avoiding to inject large bursts of data into the network.

The details of these issues are further explored in this section.

A. Insufficient Capacity

Increasing link capacity (i.e., transmission speeds) seems like
an obvious way to reduce packet serialization times and the
incidence of persistent congestion. This can be achieved by
upgrading the physical link interface (e.g., 10 GE to 100 GE).
However, such a brute-force approach to reduce latency is
not always economically sensible, nor technically feasible. An
alternative way to increase the available capacity is to use
several parallel links or multiple paths at once.

1) Leveraging Multiple Links/Interfaces: At the network
layer, a router/switch can bundle/aggregate parallel physical
links to form one logical link, e.g., using the Link Aggre-
gation Control Protocol (LACP [216]). Another way is to
permit routers to utilize parallel paths, such as in ECMP (see
Section II-A), in which the packet forwarding is routed and
load-balanced over multiple paths. A third possibility is to
simultaneously utilize the multiple network interfaces available
on many devices (e.g., using one service to minimize delay,
another to maximize throughput or minimize cost), as described
by the IETF Multiple Interfaces work [217], [218].

Transport protocols can also support multiple paths. A multi-
path endpoint can dynamically exploit multihoming by striping

data across several interfaces simultaneously. This approach
is followed by protocols like Multipath TCP (MPTCP [219]–
[221]) and Concurrent Multipath Transfer for SCTP (CMT-
SCTP [222]), as well as related proposals like Dynamic Win-
dow Coupling [223] that may apply to both MPTCP and
CMT-SCTP. The main goal of these mechanisms is to maxi-
mize throughput—and to balance traffic load across paths—by
regarding all available links as a single, pooled resource, with
lower transfer times as a result. Further, mixing multipath
transmission with some form of end-to-end redundancy (for
faster loss recovery) can be envisioned as a means of attaining
lower latency [224], [225].

Multipath transmission may reduce transfer times, but in
some cases this only benefits long-lived flows. For instance,
with MPTCP there is a protocol overhead from setting up a
subflow across a path other than the primary one [11]—such
overhead adds latency that may not make it worthwhile to use
more than one interface for a short flow. Large differences in
RTTs add to this delay, if, e.g., the first subflow goes along the
shortest RTT path, the transfer may finish before the handshake
on the longest RTT path has completed [226]. Another latency-
related issue with multipath transports is packet reordering at
the receiver [227]. Use of several paths may result in packets
arriving out of order, and large differences in path RTTs may
increase the severity of reordering events.

Adequate scheduling for concurrent multipath transmission
may help to avoid reordering, while at the same time minimiz-
ing delivery delay. Multipath scheduling has been studied (e.g.,
[228]–[231]), although these studies tend to focus on bulk data
applications, and/or on throughput optimization. Section IV-F4
provides details of how packet scheduling affects latency.

B. Redundant Information

Some types of content are simultaneously requested/
delivered to many users, for example Live TV video or mas-
sive software upgrades. Instead of redundantly transporting the
content over the network, multicast can offer a saving of ∼1/n
in capacity (i.e., a unicast flow sent n times only needs to be sent
once for each branch of a multicast tree, replicating the flow at
each router/switch). In general, IP multicast is the most scalable
solution for delivering high rate services (e.g., high definition
broadcast TV), but it is often deployed as a local managed
service (i.e., not end-to-end through the Internet). Multicast can
also be used for other services, e.g., content cache distribution
to populate CDN servers [232] (see Section II-C1), espe-
cially for delivering live multimedia content over the Internet
[233], [234].

Application Layer Multicast (ALM) avoids the need to de-
ploy IP multicast by creating an overlay network. Automated
Multicast Tunneling (AMT) is an alternate technology that
mimics end-to-end IP multicast by dynamically creating tun-
nels to native multicast routers.

For some applications, protocol headers may induce a non-
negligible overhead, dominating packet transmission times (for
low transmission rates). In such cases, header compression can
reduce the required capacity. This reduces the transmission
latency. Header compression may be applied to one or more

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2173

layers of the protocol stack, and may be either end-to-end, on a
given link, or via a network middlebox.

SPDY (Section VII-A) is an example of use of end-to-end
header compression for a specific application protocol (HTTP)
that can bring about noticeable delay savings.

Two examples of per-link, multi-layer compression are Com-
pressed TCP [235] and IPHC [236]. Robust Header Compres-
sion (ROHC) provides a family of methods that can be used
to reduce the size of the IP header as well as upper-layer
headers, be it, e.g., TCP [237], UDP and RTP [238], and other
protocols. These mechanisms can be very efficient: headers can
be compressed to as little as ∼10% of their original size [237];
for a TCP ACK segment, this means decreasing transmission
times by ∼90%. A disadvantage of link-layer header compres-
sion is that a single packet loss may increase latency, if the
loss results in desynchronization between the state (or “con-
text”) of the compressor and the decompressor. For instance,
with schemes such as Compressed TCP, context desynchro-
nization may typically inhibit fast retransmit, thus resulting
in a TCP timeout that would not happen in the absence of
compression [237].

C. Under-Utilized Capacity

It is not straightforward to optimize utilization of the net-
work capacity. On the one hand, the link(s) between two
network devices can be monitored and upgraded as described in
Section V-A, on the other hand optimal utilization of the
network capacity depends on the dynamics of end-to-end traffic
flows. This section focuses on how mechanisms for protocols
that use congestion control can be improved to reduce transfer
latency. It describes techniques for recovering more efficiently
from a congestion phase, and mechanisms that enable faster
sensing of available capacity to more quickly utilize a network
path.

1) More Aggressive Congestion Control: It has been known
for more than a decade that bulk flows using standard TCP
congestion control [239] perform poorly over paths with a large
bandwidth–delay product (BDP). One of the main reasons is the
additive-increase, multiplicative-decrease (AIMD) behavior of
TCP. In congestion avoidance, a TCP sender complying with
RFC 5681 [239] increases its congestion window roughly by
one full-sized segment per RTT; following congestion (loss),
the sender divides its window by two (at least). Hence, when
the BDP is large, a standard TCP sender may need many round-
trip times after a congestion event to attain a large window
again [240]. This behavior results in a sender being unable to
efficiently exploit the available capacity and, thus, in long flow
completion times.

More aggressive congestion-control algorithms have been
proposed, such as HSTCP [240], Scalable TCP [241], and CU-
BIC (adopted as the default TCP variant in Linux since kernel
version 2.6.15) [242]. These algorithms all modify the additive-
increase, multiplicative-decrease (AIMD) rules: by increasing
the window growth rate and decreasing the amount of window
reduction after a loss, they aim at speeding up window recovery
after loss events. The explicit focus of all such proposals is
not in low latency, but in maximizing throughput for long-lived
flows; shorter completion times come as a by-product.

(a)

(b)

Fig. 17. Impact of the initial window (IW) on transfer times, for two values
of IW. (a) IW = 2. (b) IW = 10.

A slightly different approach has been adopted by protocols
such as FAST TCP [243] or Compound TCP [244], which use
the estimated end-to-end queuing delay to control the sender’s
congestion window. Their goal is to send at the highest possible
rate while keeping the amount of queued packets—hence,
queuing delay—bounded. (See also Section IV-F7.)

2) Rapidly Sensing Available Capacity: At the start of a
connection, or after a long idle period, congestion controlled
flows are faced with the challenge of how to efficiently acquire
available capacity and determine a suitable safe sending rate
that does not adversely impact other flows that share a part
of the same path. TCP and SCTP use the Slow Start algo-
rithm [239] to probe for available capacity. Slow Start linearly
increases the congestion window for every ACK received,
roughly doubling the window each round trip time, leading
to an exponential growth of the sending rate. The algorithm
continues until congestion is detected or a slow-start threshold
is reached. The initial congestion window (IW) standardized in
RFC 5681 [239] for TCP and RFC 4960 [61] for SCTP, ranges
from 2 to 4 segments depending on the maximum segment size.
The small initial congestion window requires several RTTs to
transfer even relatively short flows, contributing to latency. The
exponential growth of the sending rate in the slow start phase
may also lead to a severe overshoot of the available capacity
and excessive packet loss [245]. Decreasing the time for TCP to
send the initial part of a transfer can significantly reduce latency
for applications that send small to medium volumes of data.

a) Sensing capacity without network assistance: In [246],
Dukkipati et al. studied the effects of using an increased initial
congestion window for Web download against geographically
spread data centers. Their study suggested that an increased
initial congestion window could decrease latencies for this
type of transaction. The IETF recently issued an experimental
RFC that allows an initial congestion window of up to 10
segments (IW10 [247]). The effect of using higher values of
IW on the transfer times of short flows is illustrated in Fig. 17,
for a flow of size 10 segments and for two values of IW
(2 and 10, respectively). Host pacing may be used in

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2174 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

combination with IW10 to reduce the probability of inducing
packet loss [248].

The effects of a much more significant change to the TCP
start-up phase were earlier explored by Liu et al. in a proposal
called Jump Start [249]. Jump Start injects all data available
in the send queue, up to the size of the receiver’s advertised
window, already in the first transmission round which in effect
allows an unlimited initial congestion window. This data is
paced by the end-host using an RTT estimate from the three-
way handshake. If data is lost, then Jump Start falls back on the
traditional TCP recovery and reduces the congestion window
appropriately. How the network would cope with the excessive
initial send rate that may result from Jump Start is unclear from
the paper, and Jump Start is also shown to be too aggressive
in [250].

Several techniques have proposed ways to estimate the send-
ing rate that may safely be sustained by a path. Swift Start [251]
uses the packet-pair technique [252] for an initial estimate of the
available capacity. To guard against imprecise measurements,
a fraction of the estimated capacity is then used as the send
rate for the next round. The capacity estimate is combined with
pacing to avoid sending a large burst of data into the network.
RAPID [253] uses a more advanced scheme where the sending
times of the packets are carefully scheduled to probe for mul-
tiple possible sending rates in a single RTT. This is achieved
by sending the packets within a multi-rate probe stream (or
chirp) where the rate increases with time. The available capacity
is then estimated based on observations of the inter-packet
spacing at the receiver. Although RAPID mainly targets the
congestion avoidance phase, it also includes an improved slow-
start. Under ideal conditions RAPID allows a suitable initial
sending rate to be detected in only 1–4 RTTs. Issues and
possible solutions for how congestion control based on chirping
can be deployed in production systems are discussed in [254].

An alternative strategy to gaining knowledge about the path
is through sharing of information between connections to
the same destination, or more generally between connections
known to pass through a shared bottleneck. RFC 2140 [255]
discusses both the possibility for temporal sharing, where a
new TCP connection could reuse the congestion window of
an earlier, now closed TCP connection, and the possibility of
ensemble sharing, where the congestion state is shared between
several active TCP connections. With ensemble sharing a new
TCP connection could immediately be given a share of the
available capacity towards a given destination. The congestion
manager framework described in RFC 3124 [256] generalizes
the concept of ensemble sharing to allow joint congestion man-
agement across all transport protocols and applications. Current
standardization work within the IETF RMCAT working group
[257] on congestion control for interactive real-time media also
includes the possibility of joint congestion management, with
[197] as a first proposal. Although joint congestion manage-
ment can allow a new flow to quickly find a suitable sending
rate, it is only applicable when multiple flows share a common
bottleneck, something which is also hard to detect reliably (see
also Section IV-F7a).

b) Sensing capacity with network assistance: While the
proposals described above did not rely on any network as-

Fig. 18. Quick-Start operation. The requested sending rate (X) is acceptable
to router R1, but not to router R2 who suggests a lower value (Y), and this value
is acceptable to router R3.

sistance, there are also a number of proposals that rely on
advanced network functionality or explicit feedback from the
network. TCP Fast Start [258] uses a possibly stale conges-
tion window from previous connections during start-up. To
compensate, TCP Fast Start sends packets with a class of
service that it expects the network to discard preferentially,
in order to protect other traffic. TCP-Peach [259] uses probe
packets that are marked to be treated by the network with lower
priority in order to detect spare capacity in a satellite network
context. Recursively cautious congestion control (RC3) [260]
also relies on priority queuing being available in the network.
In addition to sending high priority packets following TCP’s
normal algorithm, it sends additional packets (starting from the
end of the flow) at several lower priority levels to take advantage
of spare capacity.

The Quick-Start extension to TCP and DCCP [261]–[263] is
an example of an approach that relies on explicit feedback from
the network. This allows an endpoint to signal a desired sending
rate in the TCP SYN segment (Fig. 18). Each router along the
path must then agree to the desired rate or reduce the rate to
an acceptable value. The receiver feeds the information back to
the sender which sets the initial congestion window according
to the result.

The eXplicit Control Protocol (XCP [264]) proposes a sim-
ilar idea, but here each data packet carries a new congestion
header. A sender indicates its desired congestion window for
the next round in the header and the routers accept or reduce the
window size. As XCP receives continuous per-packet feedback
on the path congestion, it can not only use available capacity
quickly at flow start-up, but also react quickly to changes in
traffic load. This maintains a small standing queue size and
reduces packet drops.

The Rate Control Protocol (RCP [265]) also proposes a new
header field with information allowing routers to add informa-
tion about the allowed sending rate. One main difference to
XCP is that in RCP the routers offer the same rate to all flows.
When a path is congested, these methods allow short flows to
finish more quickly. Quick-Start, XCP and RCP all suffer from
deployment difficulties; not just the need to update routers and
switches, but also the fact that an end-system cannot jump to
the agreed rate in case it is traversing a lower layer bottleneck
that does not support the mechanism.

The discussed proposals for rapidly sensing capacity mainly
target short to medium size flows where they can significantly
reduce the number of transmission rounds required. In practice
IW10 can bring a saving of up to four RTTs [246] and the

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2175

other schemes have potential for even larger savings. Longer
flows see less proportional benefit, because the start-up phase is
of lesser significance for long flows. IW10, Jump Start, Quick
Start and RCP have been evaluated and compared by Scharf in
[250]. He found an increased initial congestion window to be
the most promising of these proposals, since Jump Start seems
to be too aggressive, while Quick Start and RCP require mod-
ifications to the entire network to be efficiently deployed, and
have not seen any practical use. Scharf also found an increased
initial congestion window to be a reasonable improvement,
since it is easy to deploy and it should not endanger network
stability. Still, an increased initial congestion window can only
offer a limited performance improvement in relation to what is
possible, and larger IW values are currently not thought safe for
more general deployment.

D. Collateral Damage

The Internet path between endpoints is a shared resource, that
can introduce a common bottleneck in which traffic from one
or more flows can influence the delay and loss experienced by
another flow. One responsibility of the transport layer is to pro-
mote good sharing of this path, and the IETF therefore requires
all traffic to use some form of congestion control algorithm
[266]. Moreover, applications vary significantly in both the
characteristics of the data they would like to send and their ex-
pectations of the network conditions (i.e., throughput, RTT, loss
rate, latency, etc). This section describes methods to mitigate
inducing unnecessary latency amongst flows. It initially focuses
on transport for Scavenger applications, followed by bursty
TCP applications, and finally how to avoid slow start overshoot.

The methods described below in the context of TCP and
a Scavenger Class can be applied to any transport protocol,
including SCTP, DCCP and other protocols based on UDP.
Although these methods can help avoid an unnecessary increase
in application latency, they are not appropriate for all traffic.
Applications that choose to use UDP in preference to TCP,
SCTP or DCCP do not necessarily react to loss or delay on the
same time-scale as TCP would. Some UDP-based applications
do not react at all [149], or react only after many RTTs (e.g.,
circuit-emulation service [267]).

1) Low Priority Congestion Control: Most bulk traffic (i.e.,
from applications that need to transmit continuously for periods
of many RTTs) use TCP. TCP probes for network capacity, by
continuously trying to grow the congestion window to the point
at which congestion is detected by loss or timeout. This has the
side effect that a bulk TCP flow builds a queue at the bottleneck
router, which causes flows sharing this bottleneck to experience
increased latency [268].

One approach to reduce the impact of TCP capacity probing,
is to use increased (queuing) delay as a metric for detecting
capacity, see Section IV-F7. Delay-based methods could ex-
ploit this to build a Scavenger Class application. This class of
application voluntarily accesses network resources with lower
priority than other traffic, preferring to quickly yield capacity
to more important traffic when multiple flows compete (see
Fig. 19). For example, transport designed for bulk background
peer-to-peer transfer or aggressive pre-fetching that desires to
capitalize on excess capacity when available. Work in this

(b)

(a)

Fig. 19. Scavenger congestion control. (a) Equal rates. (b) Scavenger flows
yield to congestion.

domain includes TCP Nice [269], which combines delay-based
inference of congestion with an aggressive reduction of the send
rate, allowing also a send rate below one packet per RTT. TCP
Low Priority (TCP-LP [270]) proposed a similar delay-based
approach, showing that using this for background transfers
instead of TCP can reduce the response time of competing Web
connections by around 80%.

In 2012 the IETF defined Low Extra Delay Background
Transport (LEDBAT [213]), an experimental method to support
Scavenger applications. In the absence of competing flows, a
LEDBAT flow is intended to sustain a rate as high as possible
while keeping the queuing delay along the end-to-end path
close to a target value. The method estimates the base delay
(i.e., the minimum delay in the absence of queuing), and then
adapts a congestion window in proportion to the difference
between the measured queuing delay and a predefined target
(with 25 and 100 ms as typical values). This is intended to
allow LEDBAT to conservatively decrease its sending rate in
the presence of queuing delay.

LEDBAT and similar techniques have been widely deployed
in peer-to-peer clients, and have been adopted by some OS ven-
dors to deliver software updates. However, some authors [271]–
[273] have reported potential issues that call into question its
intended Scavenger behavior, especially its impact on latency-
sensitive applications like web browsing [273], [274]. Some of
the difficulties in obtaining a reliable delay-based congestion
signal are shared with TCP Nice and TCP-LP, with similar
potential issues also applying for these protocols.

Recent work by Gong et al. [275] has also shown a po-
tentially negative interaction between AQM and low priority
congestion control. The AQM mechanisms in effect remove the
prioritization between flows that the low priority congestion
control is trying to achieve. Transport and network methods
need to therefore be designed to complement each other [149]
(see Section IV-F6).

2) Congestion Window Validation: Some classes of appli-
cations generate data at a variable rate determined by the

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2176 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

application itself rather than trying to send as fast as possible,
for example remote storage and real-time transmission. In the
context of TCP, this corresponds to a flow that needs to send
appreciable volumes of data, but does not need to maximize
throughput as in bulk transfers.

Variable rate applications that use TCP can significantly
impact the latency of other flows. This is because a TCP
sender can accumulate a large congestion window, even if the
application is not generating sufficient data to probe for a higher
rate. If the application then increases the rate, this can inject a
(line-rate) burst of data into the network. Congestion Window
Validation (CWV [276]) attempted to solve this by limiting the
congestion window to the actual used value.

Experience subsequently showed that while CWV addresses
a valid need, the algorithm in [276] can add latency to real-time
applications [277]. This resulted in little use of CWV, so recent
IETF activity is updating CWV to permit bursty applications to
accumulate a larger, but controlled, congestion window coupled
with a more aggressive reduction in rate when congestion is
detected using the unvalidated window [278].

The new CWV method seeks to satisfy the capacity re-
quirements of variable-rate latency-sensitive applications, and
to reduce latency for flows that share a bottleneck with bursty
TCP applications [279]. It may also improve performance for
variable-rate TCP applications that encounter a network bottle-
neck or a change in their network path characteristics.

3) Avoiding Slow Start Overshoot: Excessive bursts of data
may also be inserted into the network during connection start-
up (Section V-C2). The exponential increase of the sending
rate during slow start may result in severe overshoot of the
available capacity. This can not only result in packet loss for
a flow itself, but also causes packet loss and increased delay for
other competing flows. Avoiding (or at least limiting) slow start
overshoot can thus help reduce latency.

Hybrid slow start (HyStart [245]) is one solution targeting
slow start overshoot for bulk flows. HyStart does not change
TCP’s basic slow-start algorithm, but attempts to exit slow start
before a severe overshoot occurs. It applies two independent
heuristics to find a suitable exit point. First, it monitors when
the duration of each whole acknowledgement train approaches
the RTT, which indicates that the congestion window is large
enough to utilize the available path capacity. Second, it moni-
tors increases in the delay for the acknowledgements sent at the
beginning of each round, which indicate that queuing delays are
building along the path. HyStart is implemented as part of the
CUBIC congestion control module used as a default in Linux.

Earlier work in this area includes the Limited Slow Start
mechanism defined in [280]. This adds a maximum value for
the slow start threshold, max_ssthresh. Once the conges-
tion window grows beyond max_ssthresh, the increase is
limited to max_ssthresh/2 segments per round. Selecting
a suitable value for max_ssthresh is, however, difficult.
Paced Start [281] monitors the queuing delay that a buffer
adds between packets when sent in trains during TCP slow-
start and paces the packets sent in subsequent rounds. CapStart
[282] uses a combination of limited slow start and classic slow
start. Limited slow start is used unless the sender measures
that the bottleneck is probably at the sender and not in the

network, in which case it reverts to classic slow-start. Because
the ssthresh value determines the transition point from slow
start to congestion avoidance, it can be dynamically tuned to
avoid overshoot. Methods for tuning the ssthresh value
based on estimates of the available bandwidth are for example
explored in [283] and [284]. The challenge in all cases is that
limiting the sending rate or leaving slow start too early will
increase the time required to reach the available capacity.

VI. INTRA-END-HOST DELAYS

Host latency results from how applications are designed and
optimized to locate, request and process data. This depends
on the operating system and is constrained by the hardware
technology of the host. This section analyzes delays due to
processes within the host, as opposed to processes in-between
hosts. Buffering delay and head-of-line delays are associated to
protocol stacks and how they are designed and operate at the
end points, and are detailed in the next subsections. Moreover,
operating system delays include delays associated not only
to the software, but also to the hardware of the host. In this
framework, latency depends on the fundamental design and
architecture of the systems.

A. Transport Protocol Stack Buffering

The network stack needs to buffer data passing between the
network and application(s). Host stacks provide buffering at
both the sender and receiver, since generally applications ex-
ecute outside the kernel where protocol processing is normally
performed. Excessive host buffering not only adds to end-to-
end latency, it also can result in excessive resource consump-
tion. A straightforward mitigation is to limit the maximum
queue size, although in practice there are many places in the
stack where buffering may be required. Still, there is evidence
that operating systems are being updated to limit the effects of
bufferbloat, with the bufferbloat project [285] as a strong driver
for this work.

Semke et al. [286] showed that tuning the send socket
depth to 2 × cwnd could avoid excessive buffering for bulk
TCP flows without impacting throughput. TCP small queues
(TSQ) also modified the Linux kernel [287] to limit the default
network socket to 128 KB, to avoid sender latency. Moreover,
Goel et al. [288] showed a trade-off between the depth of socket
input buffering and the TCP throughput that could be used to
optimize performance when an application wishes to trade the
maximum throughput for reduced latency. In real-time appli-
cations (e.g., using the Real-Time Protocol, RTP), a common
issue is that network latency can cause data to arrive after a
deadline, and is then of no (or limited) value; excessive input
buffering adds to this latency. Byte Queue Limits (BQL [153])
has been added to Linux to dynamically minimize the hardware
transmit buffer, thus pushing any larger queue higher up the
network stack where AQM can be applied (see Section IV-F2).

Latency can also be introduced when data needs to be copied
between a buffer and application, kernel, or device memory.
A Zero-copy technique avoids redundant copying between in-
termediate buffers and associated context switches [289]. This

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2177

Fig. 20. Head-of-Line blocking delay, due to loss of packet A1.

can significantly benefit both bulk transfer over high-speed net-
works [290] and latency-sensitive real-time applications [291].

B. Transport Head-of-Line (HOL) Blocking

TCP’s stream-based design requires the socket API to se-
quentially deliver data to the receiver. This can cause head-of-
line (HOL) blocking with added delay when packets are lost or
reordered during transmission.

Reliable ordered delivery is not a requirement for best-
effort, datagram-based protocols based on UDP, or for DCCP.
Datagram-based protocols do not require significant receive
buffering, leaving any re-ordering decisions to the application,
where these may be kept to a minimum for latency-sensitive
applications. When data is framed as separate messages (e.g.,
application-layer framing), it may be possible for an application
to skip data that is no longer needed or avoid waiting for data
that was not received. This is provided by DCCP and by PR-
SCTP [94] which permits a stream-based partial reliability (see
also Section III-C1). DCCP and UDP-Lite can also deliver data
when the checksum fails on all or parts of a packet, potentially
eliminating HOL blocking delay.

SCTP can also reliably deliver datagrams when they do not
arrive in the order in which they were sent. This avoids HOL
blocking delay for applications that can accept out-of-order
data, or when ordered data streams are multiplexed together
such that the ordering of datagrams on the wire breaks only
between, not within the streams. Fig. 20 shows two application
streams, A and B, sent over a single TCP connection, where
ordering due to the loss of A1 causes unnecessary delay for
application B. SCTP’s multi-streaming provides a form of
multiplexing without this delay. This matches SCTP’s goal
to support latency-sensitive transaction processing applications
multiplexed over a common transport entity.

The solutions described in Section III-C for reducing packet
loss recovery delays can also all help reduce or eliminate HOL
blocking delay caused by packet loss. In particular, ECN and
FEC can remove or hide the losses that are the underlying
cause of the blocking, respectively (Section III-C). ECN only
removes congestive losses, whereas FEC hides both congestive
and transmission losses. FEC can potentially also help reduce
HOL blocking delay due to reordering.

The current sockets application programming interface (API)
provides the stack with very little information about the data
being sent. Many of the issues with protocol buffering could
be eliminated if the sender socket interface were richer and
provided additional information about the relative value and
expected timeliness required for transmission [292], [293].
A richer API could also ease migration of services to other
transports more tailored to latency-sensitive applications (e.g.,
DCCP and SCTP) [294].

C. Operating System Delays

The operating system must orchestrate and shield the di-
versity and complexity of hardware from software. Applica-
tion software uses APIs to interact with the operating system,
network stack and other applications. The host hardware
technology—more specifically, how the CPU, memory and I/O
devices (e.g., NICs) are designed to exchange and process
data—has a fundamental impact on the latency experienced by
applications [295].

Techniques such as parallelization, pipelining and zero-copy
can increase performance and reduce latency. Many forms of
parallelism can reduce latency [296], [297]. Bit-level paral-
lelism improves the processor, buses or memory word sizes.
Instruction-level parallelism utilizes multi-core or instruction
pipelining. Data parallelism takes advantage of the possibility
of multiple processors accessing part of the same data concur-
rently, while task parallelism addresses independent tasks that
can be done concurrently. Parallelizing is not always straight-
forward; data and task synchronization in a multi-threaded
environment can lead to the so-called “race condition” problem
[298]. Multithreaded programming addressed race conditions
using locks, mutexes and semaphores, however detecting race
conditions is an NP-hard problem [299].

Addressing latency in the host is not only a matter of faster
hardware, it also implies addressing the architecture of the sys-
tem. Chip manufacturers already optimize and integrate frame
control, scheduler, memory and data path logic in the silicon
fabric [300]. Network-On-Chip is an active field of research
[301], [302], which proposes to integrate network and CPU
functions on the same die [303], [304]. Rumble et al. [305]
argue that a system capable of achieving remote procedure calls
with 5–10 µs delays for data centre applications is possible, with
a long-term objective of achieving 1 µs delays. Rumble et al.
further urge silicon, operating system and software developers
to work together to achieve this long term goal.

VII. COMPOSITE SOLUTIONS

Many mechanisms bundle techniques that address multi-
ple sources of delay. This section illustrates this by describ-
ing three such mechanisms: A) SPDY—an application-layer
web protocol mechanism, B) QUIC—an experimental stream-
oriented multiplexing protocol based on UDP, and C) WAN
accelerators—edge devices that use a variety of techniques to
accelerate an enterprise’s WAN connection.

A. SPDY

SPDY [306] is an application-layer web protocol that reuses
HTTP’s semantics. As such, it retains all features including

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2178 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

cookies, ETags and Content-Encoding negotiations. SPDY only
replaces the manner in which data is written to the network.
The purpose of this is to reduce page load time. It does this by
introducing the following mechanisms:

• Multiplexing: A framing layer multiplexes streams over a
single connection, removing the need to establish separate
TCP connections for transferring different page resources.

• Compression: All header data is compressed to reduce
the overhead of multiple related requests; [306] reports a
reduction of ∼85% in HTTP header sizes, and a reduction
in web-page download times due to smaller headers that
can be as high as 1 s in a low-bandwidth scenario.

• Universal encryption: SPDY is negotiated over SSL/TLS
(Section III-B1) and thus operates exclusively over a secure
channel. This adds delay to complete the key exchange in
the SSL/TLS Handshake Protocol.

• Server Push/Hint: Servers may proactively push resources
to clients (e.g., scripts and images that might be required
in the future); alternatively, SPDY can send hints advising
clients to pre-fetch content (see Section II-C3). A down-
side of the drive to reduce web browser latency is that,
with this feature, SPDY sessions can potentially transfer
much more content that traditional methods, impacting the
latency of traffic that shares a network bottleneck.

• Content prioritization: A client can specify the preferred
order in which resources should be transferred.

SPDY consists of two components. The first provides fram-
ing of data, thereby allowing features like compression and
multiplexing. The framing layer works on top of secure
(SSL/TLS) persistent TCP connections that are kept alive as
long as the corresponding web pages are open. Clients and
servers exchange control and data frames, both of which con-
tain an eight-byte header. Control frames are used for carry-
ing connection management signals and configuration options,
while data frames carry HTTP requests and responses. The
second component maps HTTP communication into SPDY data
frames. Multiple logical HTTP streams can be multiplexed
using interleaved data frames over a single TCP connection.

A recent study [307] found that Server Push is currently
largely unsupported, leaving most of the potential latency gains
of SPDY to multiplexing. Agreeing with other earlier studies,
the authors of [307] find it hard to document a consistent ad-
vantage or disadvantage except for low-bandwidth/high-delay
environments. Notably, while SPDY reduces HOL delay at
the application layer (e.g., a stream does not have to wait to
be transmitted until another one that consists of dynamically
generated content is ready), multiplexing over TCP still gives
SPDY the RTT-timescale HOL blocking delay shown in Fig. 20.
This may be addressed by QUIC (Section VII-B).

B. QUIC

QUIC (Quick UDP Internet Connections) is a project by
Google to design a new stream-oriented multiplexing protocol
for the next-generation web. The protocol is intended to provide
low latency for services equivalent to TCP, but built upon UDP.
UDP was chosen because it offers immediate deployment and
provides a high connectivity success rate through middleboxes.

QUIC seeks to combine a carefully selected collection of
layer-4 techniques to decrease application latency for SPDY
and HTTP2.0 [308].

The main features of QUIC that affect latency are:

1) Avoiding the head-of-line blocking that would be in-
curred by streams multiplexed over TCP. Being based
on UDP, QUIC can also avoid the initial handshake TCP
would have had to perform to set up the connection.

2) Intrinsic TLS-like security that seeks to eliminate the TLS
handshaking delay [309].

3) Pacing to reduce loss due to bursts from congestion
window cycles.

4) FEC to reduce the delays caused by the need for
retransmissions.

Initially QUIC will be explored within the open source
Chromium project [310] and to experiment with mechanisms
that work across multiple protocol layers. In the long term,
this could result in an alternative protocol to TCP—although
experience of using and understanding the new mechanisms
could also result in updates to TCP itself rather than evolving
a new standard protocol. As QUIC is still in a prototype phase
and several of the sub-mechanisms are immature at the time
of writing [311], it is hard at this time to estimate the potential
gain and possible effects from the combinations of mechanisms
deployed in QUIC.

C. WAN Accelerators

WAN accelerators combine many of the component tech-
niques discussed in this paper, many of which were pioneered
by WAN accelerator vendors. WAN accelerators are typically
deployed by an enterprise that uses a virtual private network
(VPN) to interconnect branch site(s) and a centralized data
centre(s) or headquarters site(s). They are generally targeted for
deployment at the border of each site, to cover the segment of
the path over the wide-area network between sites. To some
extent they can be thought of as a way to speed up deployment
of techniques that ought eventually to be implemented in the
stack of every end-system. However, they also exploit aggregate
knowledge that is not easily available in every end-system.

1) Structural Arrangements for WAN Acceleration: Traffic
typically traverses a pair of WAN accelerators, one at the
egress of the sending site, and the other at the ingress to the
receiving site. Variants of this arrangement exist. For instance
in a mobile workforce scenario the ‘branch site’ end of the pair
of accelerators may be software installed on each employee’s
mobile device, e.g., Riverbed’s Steelhead Mobile Client [312].

Ipanema’s products are unusual in that they do not just act
in pairs; the set of boxes around the edges of a VPN over
a meshed wide-area network communicate with each other to
optimize traffic leaving the mesh from any one egress (the only
published explanation is in Ipanema’s patents [313]–[315], but
[316, Fig. 4] gives a high level overview). This approach can be
applied one-ended, so that all traffic is still routed via a WAN
accelerator at the data centre end, but branches do not need to
deploy a device.

The benefits of WAN acceleration are starting to be eroded
with the trend towards local Internet break-out at each branch

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2179

site. This so-called ‘hybrid connectivity’ uses the Internet to
reach public cloud data centers while the VPN provides con-
nectivity to private resources as well as to the same public
data centers when Internet quality is poor. Ipanema partially
addresses this shift with a product that sits at a branch site and
automatically selects between the Internet and the VPN for each
user flow [317]. However, WAN accelerators cannot be fully
effective unless they control all the traffic passing through the
devices.

2) WAN Acceleration Features: Here we focus exclusively
on the features of WAN accelerators that address latency, ig-
noring techniques that address bandwidth efficiency (e.g., cor-
rectly scaling TCP’s receive-window or using high-speed TCP).
Below is a list of latency techniques that WAN accelerators
employ. Each specific make and model of WAN accelerator
will provide only a subset of these. Where the details may be
of interest, some are explained further afterwards.

Techniques may be either generic, transport-specific (e.g.,
applicable solely to TCP), or application-specific:

• Generic

— Eliminating duplicate data transfers (loosely related
to Section II-C1 on caching and to Section V-B on
redundant information);

— QoS marking and enforcement by application (see
Section IV-F4);

• Transport

— Connection Pooling (related to Section III-A4 on
pipelining);

— SSL acceleration (loosely related to Section III-B1);
— Rapid filling of available capacity (related to

Section V-C2 on rapidly sensing available capacity);

• Application

— Cache pre-fetching (see Section II-C1);
— Reduce round trips of important but inefficient appli-

cation layer protocols.

According to the Riverbed Optimization System (RiOS v6.1)
Technology Overview [312], RiOS uses many of the techniques
listed above. Riverbed’s data de-duplication is a compression
technique that replaces sequences of bytes with index codes. It
works at a minimum granularity of about 100 B, but the codes
work hierarchically, so they can refer to a large file with only
small differences from an otherwise similar file transferred ear-
lier. This de-duplication approach is independent of the appli-
cation protocol, unlike caching (Section II-C1), which needs to
understand the objects and identifiers that an application layer
protocol uses. It can therefore compress e-mail attachments,
remote print serving, java applets, back-ups, etc.

At the transport level, Riverbed’s accelerators maintain a
pool of pre-opened connections between the ends of the WAN
segment, to deal with TCP’s handshaking round trips in ad-
vance, that would otherwise slow down short-lived connections.
Riverbed avoids aggregating many TCP connections into one
TCP tunnel, which can lead to classic TCP-over-TCP perfor-
mance problems and to packet fragmentation due to tunnel
header overhead. Instead each WAN accelerator device acts as a
TCP proxy by intercepting each TCP connection and mapping

it into another TCP connection over the wide area, which is in
turn mapped into a third TCP connection between the remote
WAN accelerator and the remote end-point.

In contrast, at the transport-layer, current Ipanema WAN
accelerators focus on minimizing TCP’s slow-start latency.
They continuously co-ordinate with each other to determine
the capacity each WAN segment should consume into each
branch. Then each TCP flow immediately opens up its window
to fully utilize this allocated capacity (bandwidth usage is also
optimized as part of this process, but that is outside our current
scope).

It has been proposed that WAN accelerators use the RSVP
reservation protocol to ensure that capacity is available on inte-
rior links as well as on edge devices [318], so that immediately
opening a full window does not overload core network links.
However, most vendors take the pragmatic approach of solely
managing access link bottlenecks into and out of the WAN.

Some vendors concentrate on a limited sub-set of the tech-
niques; for instance, Infinita focuses on reducing the time for
TCP slow-start as well as using high-speed TCP for the contin-
uing connection [319]. Nonetheless, eliminating duplication is
common in most solutions, because it often gives the greatest
gains (e.g., Riverbed claims it typically reduces flow sizes by
65% to 95%).

It is also very popular for WAN accelerators to remove chatty
handshaking rounds in application-layer protocols that were
originally designed for LAN rather than WAN environments.
The classic example is Microsoft Windows networked file
system (CIFS), which used to be very inefficient before it was
redesigned for wide area networks [320]. Streamlining is also
popular for other common enterprise applications such as Mi-
crosoft SQL Server databases (the TDS protocol); Lotus Notes;
and the Oracle e-Business application suites. However, stan-
dardized protocols also offer considerable scope for proprietary
latency improvements, e.g., Network file system (NFS); server-
based email (MAPI); and HTTP/HTTPS. Many application-
specific WAN acceleration features enhance old versions of
the protocols, and become redundant as the application-layer
protocols evolve to efficiently support wide-area networking.

Application-specific knowledge can also be used to pre-fetch
data. For instance, caching at a branch under the assumption
that several people will probably download the same corporate
email or objects hyperlinked from popular Web pages.

Some WAN accelerators include other miscellaneous tech-
niques, such as using FEC to mitigate packet losses (see
Section III-C), enforcing bandwidth limits, or placing limits on
the number of connections (to protect equipment from flow-
state exhaustion).

3) Performance Enhancing Proxies (PEPs): There are also
sets of performance accelerators aimed at links with specific
characteristics, such as intermittent connectivity, variable band-
width on demand, high latency, high loss, etc. These devices
act similarly to WAN accelerators and often provide similar
functions, but can also leverage cross-layer features—such as
information about the network held in a service subscriber
database, access to radio resource management functions to
accelerate transmission of key data, and the ability to setup
and manage lower layer bearers with specific capabilities. Such

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2180 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

devices are widely deployed to support wireless, cellular and
satellite services, especially to manage application performance
in the face of high or unpredictable delay or variable loss (see
[321] for further information).

VIII. CLASSIFYING SOLUTIONS IN DIFFERENT WAYS

To determine a sound structure for this survey, a few alterna-
tive classification structures were considered. We arranged all
the techniques using each scheme to test which one would both
encompass all the material and lead to fewest overlaps.

An alternate way that we explored for structuring this survey
was based on the phase(s) of a communication session that each
technique addresses. In principle, any exchange of data between
endpoints can be regarded as being divided in (up to) three
phases over time:

1) Session startup.
2) “Getting up to speed” (GUTS), i.e., assessing a safe

sending rate for the path by progressively increasing the
sending rate.

3) Data transfer.
Taking a long-lived, TCP-based bulk transfer as an example,

(1) corresponds to the three-way handshake, (2) to the initial
slow-start phase, (3) and to transfer of most of the data after the
initial slow-start transient (with the sender mainly in congestion
avoidance). Of course, this mental model does not necessarily
apply as-is to any arbitrary data exchange, nor are all phases al-
ways non-overlapping. For instance, for short-lived TCP flows
transfer of all data (phase (3)) may well happen without the
sender ever exiting slow-start (phase (2)). Nonetheless, in spite
of such potential ambiguities, the model is convenient since
some latency-reduction techniques focus on specific phases of
the lifetime of a session.

Table II illustrates the way in which the types of techniques
explored in the previous sections map into different phases of a
session. An ‘x’ symbol denotes that a given technique can likely
bring latency-reduction benefits in the corresponding phase,
whereas an ‘?’ symbol indicates that benefits are not clear-cut
and may depend on several factors, or may involve tradeoffs;
the reader is referred to the relevant sections for details. Note
that many of these techniques are applicable to, or have an
impact on, more than one of the three phases described above,
implying that such a classification would be of limited use.

Another way of structuring a taxonomy of techniques that
can reduce latency would be to map the techniques to the
layers of the OSI model. However, we discarded this obvious,
easy classification scheme since it did not offer much insight
into the problems each solution addresses; also, we found
that it obscured the fact that some types of methods may be
applied at multiple different layers of the stack, or cannot be
simply mapped to a single layer because they may require the
concerted actions of elements in more than one layer.

For instance, techniques suchasTFOfor fasteropeningofTCP
connections (Section III-A3) are clearly located at the transport
layer. However, TCP Early Retransmit (Section III-C2)
also sits clearly in the transport layer, yet it addresses very
different issues than TFO. Methods like compression of
protocol headers may be applied to application-layer protocols
(as, e.g., SPDY does, see Section VII-A) or to network- and

transport-layer headers (as, e.g., ROHC does, see Section V-B).
Yet they tackle a similar issue—protocol header overhead.
Further, some other techniques, like Active Queue Management
(Section IV-F6), involve the interaction of entities located at
more than one layer of the stack (e.g., the transport protocol
and a buffering system in a lower layer, in the case of AQM).

Even within the structure we adopted, the top level sources of
delay to use were not obvious (and they are different from those
proposed by [322]). For instance, we do not have a section for
delay due to interaction between an endpoint and the network,
even though we have one for interaction between endpoints
(Section III). A number of the delays are certainly exacerbated
by a lack of explicit interaction between endpoint and network
in the Internet architecture, e.g., those to do with sensing
available capacity in Sections V-C2 and V-D. Nonetheless, it
did not seem appropriate to identify this interaction as a source
of delay, when it is actually the absence of this interaction
that causes delay. Therefore, instead we chose to classify these
delays by the underlying source of delay, e.g., attempting to
sense capacity.

If interaction between endpoint and network had been one
of our top level classifications, the following techniques would
have fallen within it:

• Introduction of explicit signals:

— Classic ECN (Section III-C4)
— Instant ECN, e.g., DCTCP (Section IV-F6a)
— Virtual queue ECN, e.g., HULL (Section IV-F6a)
— Lower priority for probe packets, e.g., Fast-Start,

TCP-Peach (Section V-C2)
— Explicit rate signaling, e.g., Quick Start, XCP, RCP

(Section IV-C2)

• Working round lack of explicit signals:

— Delay-based congestion control (Section IV-F7c)
— Chirping to detect buffer capacity (Section V-C2)
— Increasing TCP’s initial window (Section V-C2)
— Congestion window validation (Section V-D2)
— Detecting slow-start overshoot using delay

(Section V-D3)

IX. GAIN VS. DEPLOYABILITY

Having surveyed a wide range of techniques, we now aim
to summarize the merits of the main types of technique. Our
primary approach will be to visualize the gain in performance
of each technique against the potential difficulties and cost
foreseen in getting it deployed—gain vs. pain.

A. Gain

Quantifying the benefit of each technique requires consensus
on a figure of merit. We decided on percent reduction in
session completion time

= 100%− session-completion-time
original-session-completion-time

.

In general, we take the baseline for original session comple-
tion time as the state of the art technology used in production
systems at the time of writing (2014).

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2181

TABLE II
ALTERNATE TAXONOMY, BASED ON THE TYPICAL PHASES OF A COMMUNICATION SESSION

‘Session’ is a deliberately general concept that can be
stretched to mean a message, a connection or a set of connec-
tions that fulfill a task. This allows us to compare techniques
that address a range of interactions, as long as the content
of the session is the same in the before and after scenarios
(denominator and numerator):

• a one-way end-to-end event notification (message), e.g., a
price update;

• a two-way exchange (connection) including connection
set-up and optionally security set-up, e.g., retrieval of a
simple Web page;

• a set of exchanges of information (session), e.g., retrieval
of a geographical map identifying hardware shops in a
locality.

‘Completion time’ was chosen to focus on the whole of a
task, but can also be used to measure the time to complete

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2182 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Fig. 21. Bubble plots of rough latency gains against ease of deployment for a selection of techniques. The heights of the captions of each bubble represent
typical values, and the vertical extent of the bubble represents variance. See Section IX-D for expansion of abbreviations and commentary on each technique.
Some techniques discussed in the commentary are not included in the diagram because their latency reduction is too scenario-specific. (a) Small session (∼20 kB)
flows over WAN. (b) Small session (∼20 kB) flows over LAN. (c) Large session (> 2 MB) flows over WAN. (d) Large session (> 2 MB) flows over LAN.

the component steps in a process. The term latency is often
associated with the time spent getting started before the body of
a task can start, and completion time can measure completion of
the start-up phase. It is not always natural to stretch this to the
extreme. For instance the latency of a streaming video is the de-
lay between requesting it and the first frame being played-out,
but ‘completion time’ is not a good term for this. Nonetheless,
as long as it is qualified by what is being completed, completion
time is a useful general metric.

One disadvantage of using reduction in completion time is
that all the techniques with the most startling results bunch up
at just under 100%. To solve this, a possible alternative metric
would have been speedup factor

=
original-session-completion-time

session-completion-time
.

However, then the majority of reasonable techniques would
bunch around 1–1.5. Given few techniques give exceptional
improvements in performance and most give only moderate

gains, we use percent reduction in completion time, except
if we need to bring out the distinctions between those with
exceptional improvements.

B. Pain

The difficulty foreseen in deploying a technology is necessar-
ily subjective. We arrange the techniques on a rough scale from
‘Very Hard or Costly’ to ‘Straightforward.’ The scale does not
extend to ‘Easy’ because it is debatable whether deployment is
ever easy in a complex system like the Internet.

In general, techniques that offer immediate performance gain
when unilaterally deployed on an end-system are placed at
the ‘Straightforward’ end of the spectrum. On the other hand,
techniques that require the sender, receiver and all network
elements on the path between them to be changed before there
is any benefit are considered very hard to deploy, particularly if
all parties have to change at once. Nonetheless, we have still
categorized some techniques that are unilaterally deployable

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2183

as ‘Very Hard or Costly’ because of their prohibitive cost
(e.g., replacing long-distance fiber links with point-to-point
microwave links).

C. Caveats and Scenarios

Fig. 21 arranges a small selection of the techniques in the full
survey as bubble plots. The vertical axis represents reduction
in session completion time and ease of deployment is shown
on the horizontal. Bubble diagrams are generally approximate,
which suits the rough nature of the data being presented.

In general, bubbles higher and to the right are better.
Nonetheless, it is important not to ignore techniques on the
left, because subsequent research might succeed in making a
technique easier to deploy.

The vertical positioning of each bubble’s caption represents
the typical reduction to be expected, while the vertical extent of
each bubble roughly represents the likely variance of the latency
reduction. We admit that variance of reduction in completion
time is not an intuitive metric, because it usually has more
to do with variance of completion time before the solution
is applied, not variability in how well the solution reduces
completion time. Wider bubbles merely show that a technique’s
deployability is less certain.

Such a simple visualization cannot hope to summarize all the
factors involved, which can only be appreciated by looking up
the relevant techniques in the body of this survey and following
up the references if necessary. This interim visualization alone
should not be used to prioritize work, nor to identify gaps in the
solution space, because:

• it only includes a small selection of the techniques in the
present survey;

• quantification of latency reduction often relies on evidence
from the promoters of a particular technique without inde-
pendent verification;

• with such a wide variety of techniques, it is hard to
ensure that the baseline cases are all comparable before
calculating the reduction in latency of each technique;

• the reduction in latency of any technique depends on
the prevailing scenario—the levels of transmission and
congestion losses, the bottleneck capacity, the degree of
multiplexing, the patterns of foreground and background
traffic arrivals, the topology, etc.;

However, we felt a selection of ball-park figures would be more
useful than no quantification at all.

Despite the numerous parameters above that could character-
ize a scenario, two parameters in particular strongly affect the
outcome in nearly all cases:

• the amount of data transferred (‘session-size’);
• how far apart the end-points are (or were originally), e.g.,

WAN, LAN.

It should be sufficient to visualize just two cases for each of
these two dimensions, leading to the 2 × 2 matrix of cases
shown. We assume about 20 kB of data for the small session-
size, and we will take a large session-size to mean more than
two orders of magnitude greater (> 2 MB). Fig. 21 illustrates
the case of a WAN (∼200 ms) and a LAN (∼2 ms RTT).

D. Commentary

The ‘gain and pain’ of the techniques selected for Fig. 21 is
discussed below, organized by the main sources of delay that it
addresses. The bubbles are colored to match the main sources
of delay in Fig. 2.

1) Structural:

Optimize routes (Section II-A):
The scope for reducing path latency by optimizing

the route is distinctly scenario-specific. Chetty et al. [323]
measured the latency from Johannesburg in South Africa to
various servers around the world and compared it with the
distance ‘as the crow flies.’ Dividing the measured latency
by the time it would take for light to traverse the direct
distance in glass gives the stretch factor introduced by the
Internet routing system, further compounded by circuitous
cable runs, i.e., stretch=measured_latency/ideal_latency.
The stretch factor to servers in the southern hemisphere
or equatorial regions was always more than 2.5. In con-
trast, the stretch factor to northern hemisphere servers was
typically about 1.3. The explanation was that all routes tra-
versed northern hemisphere Internet exchanges, even when
the other end was also in Africa, such as Nairobi in Kenya,
which exhibited the highest stretch of 6.9. Reducing the
worst stretch (6.9) to the best (1.25) would represent a
reduction in delay of 1−1.25/6.9 ≈ 82%.

In contrast, optimizing route latency within a network
in a more mature market offers diminishing returns. For
instance, an unpublished study conducted on a European
national core network found that edge-to-edge latency
could be reduced by about 3.2% on average by rearranging
the OSPF link weights. This gain would be smaller when
translated into a reduction in end-to-end delay, because
the network core is only a proportion of the end-to-end
path, and there is little scope for route optimization in
the access portion. The same study showed that further
reducing delay on every route to its absolute minimum
(‘as the crow flies’) would lead to an average reduction
in delay of 79%—nearly as bad as the worst case in the
Johannesburg study. This is perhaps not surprising, since
the relatively small absolute reductions in delay that can
be achieved at a national scale would not be worth the
investment in thousands of routes between pairs of towns,
at least not in comparison to the greater potential gains in
absolute terms between a few major international centers.

DNS (Domain Name System) pre-fetch (Section II-B):
DNS pre-fetching will save on average 250 ms for

a Web user once a link is followed [324]. A survey on
DNS lookups in Jung et al. [17] shows that around 25%
of DNS lookups take more than 1 s and as many as 5% of
DNS lookups take more than 10 s. DNS pre-fetching re-
moves this excessive variability, represented by the height
of the bubbles in the diagrams. Jung et al. [17] found that
around 85% of lookups were resolved locally. We have no
data for the benefit of DNS pre-fetching in a LAN setting.
This benefit is likely to be small because the resolution
requests, if done at all, will probably be local as well. DNS
lookups create initial latency for both short and longer

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2184 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

lasting flows, but they do not affect per-message latency
once the initial lookup is done.

CDN (Content Distribution Network; Section II-C1):
By placing content closer to the user, CDNs can

greatly reduce the latency. E.g., practical tests show that,
when combined with front-end optimization (FEO), CDNs
can make web pages load up to four times faster [325].
A CDN is most cost-effective for small objects, but it still
reduces completion time considerably for larger objects,
although with more storage capacity expense. More sophis-
ticated solutions are available, e.g., those that serve the start
of a large object from cache, then resort to the origin server
for the bulk of the data. CDNs rely on economy of scale by
sharing the cost over many users to increase the cache-hit-
rate. Therefore, a CDN would be prohibitively expensive
and rarely improve latency for content that is already local,
which is why a CDN would provide no benefit for objects
retrieved over a LAN.

Data pre-fetch (Section II-C2):
Pre-fetching data can offer near-zero latency, but only

if the right data was included in all the data that was
pre-fetched. Arbitrarily large reductions in delay can be
achieved by pre-fetching arbitrarily large amounts of data,
which is why the bubbles for pre-fetching data show high
gain but also high pain—towards the costly left-hand end
of the plots. The precise levels of gain and cost will be
highly scenario-specific (e.g., more interesting over DSL
than cellular access). The one certainty is that pre-fetching
more data offers diminishing returns.

2) Interactions Between Endpoints:

TFO (TCP Fast Open; Section III-A3):
The rightmost column of Table I shows that TFO

removes the initial round trip, but only for a resumed
session. A 20 kB transfer will be broken into 14 segments
if the maximum transmission unit is 1500 B. For a TCP
slow start with a traditional initial window of 3 segments,
it will take 3 rounds of window doubling to transfer these
segments (3, 6 & 5 segments respectively). So in this case
TFO reduces completion time by roughly 1–3/4 or 25%.
Of course, for connections to new servers or to servers
that have refreshed the seed for the TFO-cookie, there will
be no reduction, hence the bubble in the diagram extends
down to zero. On a LAN, the best latency reduction will
be a little less than 25% merely because server processing
time becomes more significant relative to round trips. For
any large transfer, the single round-trip saved by TFO
makes little difference.

TLS-FS (Transport Layer Security/False-Start; Section III-B1):
As can be seen in Table I, False-Start saves a round

trip when first opening a secure session. However, when
resuming a session, the existing TLS design already saves a
round trip and False-Start does not improve on this (except
in the less common case where the server resumes the
session). Therefore, the gain of False-Start is similar to that
of TFO, but in the converse circumstances (only for new,
not resumed sessions). Like TFO, False-Start only saves
delay if both ends support it, but it suffers from consid-

erable additional deployment constraints, as explained in
Section III-B1.

RTOR (Retransmission TimeOut Restart) and TLP (Tail Loss
Probe) (Section III-C2):

Techniques related to enhanced packet loss recovery
only come into play when loss occurs. As a result their
average gain is low, but they can bring significant gains for
the short flows hit by loss(es), thus making low delay much
more predictable.

In the typical case RTOR shaves one RTT off the
recovery time when a loss occurs in the end of a flow, and
up to one RTT plus the delayed ACK time in the best case
[97]. For a short flow over a WAN, assuming an RTO of
twice the RTT and a delayed ACK time of 200 ms, this
will result in a 25% reduction in completion time in the
best case. Over a LAN, loss is more rare and the RTT is
less significant in relation to the RTO. The delayed ACK
time can, however, be significant. Assuming a Linux sender
with a minimum RTO of 200 ms, the flow completion time
of a short flow can in the best case be almost halved by
removing the delayed ACK time from the recovery time.

As reported in Flach et al. [91], TLP (Tail Loss Probe)
reduces the average completion time for short Web flows
over the Internet by roughly 3%. Furthermore, [91] reports
observing RTOs that are 200 times the RTT in their Web
traces. As TLP can reduce the loss recovery to a few RTTs
the gain in the best case can be close to 100%. Over a LAN,
the gain in the best case can also be close to 100%, as the
RTO is typically much larger than the RTT.

For large transfers the loss recovery delay is of limited
impact, rendering both schemes less significant for this
case. Both schemes are straightforward to deploy as they
require only sender-side modifications.

Adding Forward Error Correction (FEC) to TCP
(Section III-C3):

Mechanisms for adding FEC to TCP can fully mask
packet loss when it occurs. As the packet loss recovery
time can dominate the completion time for short flows in
both WAN and LAN environments, the gain is in the best
case close to 100%. The average gain and the impact on
long transfers is still limited for reasons discussed above.
Adding FEC to TCP requires support at both the sender
and receiver. Care must also be taken to ensure that proper
congestion control is invoked for packets that are lost and
recovered through FEC.

ECN (Explicit Congestion Notification; Section III-C4):
The use of ECN can also remove the need for dropping

packets. As currently specified [63], ECN will have similar
gains to TCP with FEC, in that it removes the packet loss
recovery time. The use of ECN requires support from both
ends as well as the network.

3) Transmission Path:

Straighter links (Section IV-A1):
A common rule of thumb used within carriers is that

a fiber or cable route will be 25% longer than the line-of-
sight route, but no scientific references to this are known.
The shorter transmission path would cut the completion

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2185

time of short TCP flows by (1− 1/1.25 = 20%), because
a short flow is still in the slow-start phase when it finishes,
which requires a set number of round trips for a certain
transfer size. The completion time of a larger transfer
is limited by bandwidth, not path length, so straighter
cables would typically not affect its completion time. In
the case where two long-running TCP Reno transfers share
a bottleneck they will take shares of capacity inversely pro-
portional to RTT, so the completion time of a large transfer
would be shorter if the cables were straighter. However, the
rate of modern TCP is becoming less dependent on RTT
(e.g., TCP CUBIC’s packet rate is roughly proportional to
1/RTT0.25 [326]).

Hollow fiber (Section IV-A2):
The signal velocity in ordinary optical fiber is 2/3 of

that in air or hollow fiber. Therefore, hollow fiber could re-
duce path delay by up to 33%, assuming its jointing losses
were improved. This advantage would typically only be
realized by short flows, for the same reasons as discussed
above for straighter links. Both hollow fiber and straighter
links would be prohibitively expensive, except for niche
applications such as private links between financial centers.

Microwave (Section IV-A3):
Microwave combines the 20% line-of-sight benefit

(Section IV-A1) and the 33% increase in signal velocity,
making a total reduction in delay of roughly (100% −
20%)(100% − 33%) = 53%. This has to be traded off
against weather-induced unreliability. Therefore, in prac-
tice, the theoretical 53% latency gain from microwave is
often reduced by the need for repeaters (which add 6.5 µs
every 60 km) and the need for end-to-end link FEC (adding
around 150 µs).

Reducing WiFi medium acquisition delay (Section IV-B):
The IEEE 802.11 Medium Access Control incorpo-

rates two medium access methods: the mandatory Dis-
tributed Coordination Function (DCF) method and the
optional Point Coordination Function (PCF) which pro-
vides Time Bounded Services (TBS). DCF is based on the
Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol, with two possible access methods,
a so-called basic method and the RTS/CTS method. Var-
dakas et al. [327] shows that, depending on the data rate
and the number of stations, delays can be reduced by
hundreds of milliseconds up to more than a second using
RTS/CTS instead of the basic method.

Adopted in IEEE 802.11n, frame aggregation im-
proves efficiency by reducing overhead due to MAC head-
ers. Gains due to frame aggregation depend strongly on
the rate and noise level of the channels, number of sta-
tions, packet size and specifics of aggregation technique
[118]. [328] shows that dozens to hundreds of milliseconds
can be removed using two-level aggregation instead of
A-MPDU, while [117], [329] show that two-level aggrega-
tion outperforms A-MPDU, which outperforms A-MSDU
aggregation. Moreover, [330] experimentally compares a
system with and without frame aggregation, and shows that
frame aggregation improves throughput, with minimum
impact on average inter-frame delay, albeit with some

impact on jitter. Other works [119], [331] show that frame
aggregation can be deployed and fulfill delay sensitive
requirements, such as for voice and video services.

Removing DSL Interleaving (Section IV-D):
Forward error correction coupled with interleaving

(I-FEC) is a mechanism widely adopted for impulse noise
protection. On the one hand, the mechanism itself intro-
duces delay but, on the other hand, it hides transmission er-
rors along wired or wireless media, which would otherwise
introduce retransmission and time-out delays. Interleaving
introduces the following levels of one way delay:

• ADSL1: operators use either FAST (0 ms interleav-
ing) or SLOW (16 ms interleaving).

• ADSL2/2+: most common is 8 ms interleaving.
• VDSL2: most common is 8 ms interleaving.

ARQ: retransmission is used for impulse noise protec-
tion, a shorter I-FEC with 0.5 ms interleaving delay kept
for channel protection. In case a packet is retransmitted it
will take 4 ms longer (so a total delay of 4.5 ms), but such
retransmits are only expected to occur for 1% to 5% of the
packets.

Removing interleaving on DSL is applicable only for
the WAN cases. In the first case (Fig. 21(a)) removing
interleaving would represent a considerable reduction in
delay (e.g., removing 8 ms one-way interleaving delay
removes about 8% of a 200 ms WAN round-trip time, and
as much as 80% of a 20 ms round-trip time). Figure 12
of Sundaresan et al. [332] shows that US broadband ser-
vice providers using cable can offer less than 10 ms last-
mile round-trip latency to nearly 100% of their users,
while a significant proportion of customers of DSL-based
providers experience up to 60 ms, largely because of inter-
leaving.

In the case of elephant file transfers (Fig. 21(c)), the
reduced RTT should make little difference to throughput
and therefore completion time. While removing interleav-
ing leaves the path more susceptible to impulse noise, this
would have little effect on the long-running throughput
of modern more robust transport protocols, such as TCP
CUBIC, which would strive to maintain the line rate, as
long as the bit error rate (BER) introduces loss at a lower
order of magnitude than the congestion control mecha-
nisms themselves induce to fill the link.

Fairhurst and Wood [92] discusses the impact of a
range of Automatic Repeat Request (ARQ) methods on
TCP, and identifies the ways in which ARQ introduces
delay to Internet traffic.

Optimize Forwarding (Sections IV-E and IV-C):
The objective is to reduce Stotal = SD +SI +SL +SF +

SO + SS, where SL is the delay due to the packet header
manipulation and SF is the delay of passing through the
switching fabric (see Section IV-E). Ramaswamy et al.
[132] give a good overview of baseline network processing
delay, while Rumble et al. [305] set the challenge on how
far we should aim. This is closely related to improve-
ments addressed in Section VI-C on OS delays. These
delays are of an order of magnitude of nanoseconds, thus

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2186 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

improvements in these sources will be small relative to
typical delays from other sources measured in microsec-
onds. SI and SO represent the input and output port queuing
delays, in addition serialization/deserialization delays are
given by SS and SD. Newman [333] indicates that, if cut-
though is properly implemented, it can remove dozens to
hundreds of microseconds on a 10 GE interface. Moreover,
I/O buffering and serialization/deserialization delays can
be reduced by increasing the port line speed or reducing the
number of port traversals (see Section IV-C). In compari-
son with other sources of delays, which can reduce latency
in the milliseconds order of magnitude, improvements in
forwarding yield small delay gains.

Correct buffer sizing (Sections IV-F2 and IV-F3):
The work of [135] and others has shown that buffers

in many places in the Internet are sized far larger than
they should be. Unless the traffic pattern makes one of
these buffers become the bottleneck, they will introduce
no delay. However, whenever traffic converges on such
a buffer, long delays will be experienced—as long as a
few seconds. No buffer ever needs to hold more data
than the longest possible round-trip half-way round the
earth and back at the speed of light in glass (about
200 ms). Therefore, re-sizing a 2 s buffer to 200 ms will
immediately reduce worst-case latency for short flows
with a 200 ms base delay (case 1a) by 1− (200+ 200)/
(2000+200) = 82%.

Ideally, AQM would also be implemented in the buffer
(see Section IV-F6). Adaptively sizing low level buffers to
the minimum needed to absorb queue variation can both
significantly reduce delay and push the queue up into a
higher layer buffer where AQM is more appropriate (see
Section IV-F2). Correct sizing of a buffer should always be
possible by configuration, even if AQM or adaptive buffer
sizing has not been implemented in the equipment at hand.
A buffer intended for numerous multiplexed flows may be
sized even smaller than one worst-case global round-trip
(see Section IV-F3).

Class-based scheduling (Section IV-F4):
Prioritizing latency-sensitive traffic can eliminate most

queuing delays along a path, provided that the latency
sensitive traffic uses less than the capacity available. The
latency reduction comes at the expense of extra latency for
other traffic sharing the path. This can eliminate close to
100% of queuing delay for latency-sensitive traffic along
the path. The percentage reduction of the overall flight
latency depends on what the minimum flight time is when
there is no queuing, so it can provide savings of between
∼95% and ∼50% with current levels of network buffering.

Class-based scheduling is only applicable where a
small proportion of traffic is latency sensitive and the
remainder is not. In scenarios where the majority of the
traffic is latency sensitive, it is less useful.

AQM (Active Queue Management; Section IV-F6):
AQM algorithms aim at avoiding having buffers that

are persistently full, and recent AQM proposals use queu-
ing delay as an input variable to their control system [189],
[190]. For instance, PIE—like Adaptive RED, a much

older algorithm [334]—tries to stabilize the queue around
a preset value of a few tens of ms. Hence, any reduction in
queuing delay achieved thanks to AQM is to be compared
to the maximum delay corresponding to a full buffer, and
is dependent on the way the AQM parameters are set;
other parameters such as the load and degree of statistical
multiplexing (i.e., number of flows and composition of the
traffic mix) will also play a role in how (much) the buffer
is filled— e.g., an AQM may have little effect in a very
lightly-loaded buffer.

In the absence of bufferbloat, buffers for small num-
bers of flows can be supposed to have been sized as to
absorb (roughly) one worst-case RTT’s worth of packets,
which gives an indication of the maximum possible queue
length. In the WAN example, if we consider a persistently
filled 200 ms buffer (i.e., an RTT-sized buffer) and an
AQM achieving an average queue of 20 ms, then the four
rounds needed to transfer 20 kB of data with TCP (one for
connection setup, plus three for the data) will take about
1600 and 880 ms without and with AQM, respectively.
This amounts to ∼45% reduction in completion time. With
a bloated bottleneck buffer—say, one second’s worth of
buffer space—completion time without AQM may take as
much as ∼4.8 s, hence giving a reduction of ∼83% when
AQM is used. Similar rough estimates can be obtained in
the LAN scenario with short flows, 2 ms buffers and an
AQM that keeps queuing delays at a few hundreds of µs
(like DCTCP’s does at 1 Gbps link speeds [194]).

DCTCP (Data Centre TCP; Section IV-F6):
The developers of DCTCP claim that it cut mean com-

pletion time in their Bing data centre by about 40%–45%
for short flows and by about 86% during periods when load
was ten times the normal load. Perhaps more importantly,
the 99.9th percentile delay reduced by over 40%, meaning
that delay not only reduced, but it became more predictably
low. DCTCP can be deployed in a private data centre,
but its placement on the bubble diagram indicates that
it would be very hard to deploy in a multi-tenant data
centre or on the public Internet. This is because DCTCP
requires simultaneous changes to senders, receivers and
all switches. A way has been proposed to incrementally
deploy DCTCP on the public Internet [209], which would
shift the DCTCP bubble to the right. However, it is only in
the early stages of evaluation at the time of writing.

DBCC (Delay-Based Congestion Control; Section IV-F7c):
Delay-based congestion controls use path delay (one-

way or round-trip) as a measure of congestion. During
periods when all flows at a queue are using DBCC, this
enables them to keep queuing delays along the path low;
often to below a configurable threshold of a few millisec-
onds. For example, if the bottleneck link has a maximum
queuing delay of 200 ms, and the sources use delay-based
congestion control with a threshold of 10 ms, there will be
a 95% reduction in maximum queuing delay compared to
what would happen if loss-based congestion control was
used. The overall flight latency reduction depends on the
minimum flight time when there is no queuing. If this was
2 ms, for example, the saving could be ∼95%, and for a

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2187

semi-global connection of, e.g., 200 ms, a ∼47% reduction
could be achieved. However, DBCC can have performance
issues when coexisting with conventional loss-based ap-
proaches (see Section IV-F7c).

4) Related to Link Capacities:

IW10 (TCP initial window = 10; Section V-C2):
A short 20 kB flow typically consists of 14 segments.

Therefore, following TCP’s initial handshaking round, it
would require 2 rounds to complete (consisting of 10 then
4 segments respectively). This compares to the 3 rounds
necessary if IW were 3 (see earlier). Therefore in this
case, IW10 cuts delay by 25%. The large majority of
web flows are ten segments or less [246], therefore they
would complete in one round (not including the handshake
round). The potential negative effects of using a larger ini-
tial window are not yet fully understood, requiring further
evaluations [247].

IW10+TFO:
For a resumed 20 kB connection, combining IW10

with TFO would cut both the handshake round and one
round of slow-start relative to IW3, which leads to a
significant halving of completion time in the case of a
20 kB flow.

IW10+TLS-FS+TFO:
Combining all three of these techniques would cut two

rounds from both a first-time connection and a resumed
connection.

QS (Quick-Start; Section V-C2):
As simulated and shown analytically in Sarolahti et al.

[263], Quick-Start will satisfy a request for a small 20 kB
flow in two round trips, which is 50% of the four round
trips that regular TCP slow-start would take. Quick-Start
cannot complete in less than two round-trips, because it
needs the first round trip for the explicit signals to request
and grant the sending rate. Over a LAN, the full 50%
gain may not be realized if the bottleneck rate is low. For
instance, after the initial rate has been granted, a 20 kB flow
will take 1.5 ms to transfer at 100 Mb/s, which consumes
nearly another round trip, leading to only 35% reduction
in latency. Quick-Start offers little benefit to elephant file
transfers, because the start-up latency becomes a small
proportion of the overall completion time.

Despite the considerable gain of Quick-Start, the de-
ployment pain is high, except for private networks. A host
cannot know whether it is safe to send at the granted
rate [335], if it may overrun a L2 bottleneck that has
not been updated to support Quick-Start. The Quick-Start
protocol maintains a count of QS hops so that a host will
not use the granted rate if the number of QS hops is
less than the number of IP hops (taken from the IP time-
to-live field). During initial deployment when very few
paths will be fully populated with QS-enabled routers, this
will nearly always prevent QS from being used across a
general Internet path. Layer 3 approaches like Quick Start
(Section V-C2) do not check whether lower layer buffers
can accept a sudden influx of traffic.

New-CWV (New Congestion Window Validation;
Section V-D2):

Using new-CWV benefits other flows sharing a bottle-
neck by reducing collateral damage, but can also reduce the
latency of a flow itself: for example, a flow that downloads
a series of Web objects, with a request for 20 kB every
10 s would experience a delay of 4 round trips per request
using either standard TCP or the experimental conges-
tion window validation update in RFC2861. A persistent
connection could complete each transfer in 1 RTT using
new-CWV. The benefit of using new-CWV is strongly
dependent on the traffic pattern and network conditions.
More scenarios and results are presented in Biswas et al.
[336] and Angelogiannopoulos [337] who reported a 60%
improvement for YouTube traffic.

5) Intra-End-Host:

Stack buffering (Section VI-A):
Appropriate dimensioning and handling of end-host

buffering can bring significant latency improvements for
some particular applications. For instance, zero-copying
techniques in the context of web servers (i.e., avoiding
memory copying and context switching between processes
that constitute a server-side application) have been shown
in [290] to allow for speedup factors between 1.3 and 2.3,
in terms of number of served requests; similarly, they show
that a zero-copying technique allows to serve up to 44%
more requests with a “good” response time (as specified
in a standard web benchmark) under similar conditions of
load, file sizes, etc. Moreover, [338] recently demonstrated
that a redesign of how the TCP stack is implemented
in the OS (kernel and user-space), taking into account
multicore processors, and addressing inefficiencies from
packet I/O, memory and TCP connection management, can
dramatically improve host performance by 33% to 320%
compared to the plain Linux stack. However, given the
information available in the above cited references, it is
very difficult to infer how such performance gains would
translate into end-to-end latency gains for a specific flow.

Multi-streaming (Section VI-B):
Application layer framing (ALF) and the potential to

deliver data out-of-order in the Stream Control Transport
Protocol (SCTP [94]), SPDY (Section VII-A) or QUIC
(Section VII-B) can allow multiple ordered data streams
to be efficiently multiplexed onto a single transport asso-
ciation or connection; this means that these streams are
handled by the same congestion controller, as opposed to
each one getting their own. A flow could only see a benefit
if it consists of several smaller streams; in this case, the
completion time heavily depends on packet loss [307] as
well as how the session is divided (how many streams, of
which length, and when they begin).

To better understand the range of possible benefits, we
can consider the worst and best possible case in terms of
starting times: if the streams begin at exactly the same
time, there will typically be no benefit from using multi-
streaming as opposed to using multiple separate trans-
port associations or connections—in fact, the slightly less

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

2188 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

aggressive congestion control behavior of one as opposed
to two controllers could lead to a slightly larger delay.
If, however, the two streams are exactly consecutive, i.e.,
stream 2 begins when stream 1 ends, then stream 2 can
benefit from immediately using the larger congestion win-
dow of stream 1.

Assume, for example, that a short 20 kB (typically
14 segments) flow is split in half and the two streams
are sent sequentially. Without multi-streaming, stream 1
needs 2 rounds in Slow Start and stream 2 needs 2 rounds,
yielding a total of 4 rounds. With multi-streaming, the
second stream can be transferred in only 1 round, yielding
a total of 1 rounds—a reduction by 25%. With larger
flows, the doubling of the congestion window in Slow Start
means that, ideally, flows are split in half such that half
of the transfer can finish within only one round following
a larger number of preceding rounds—a completion time
reduction that approximates but never reaches 50%. The
gain increases with the number of rounds, i.e., the length
of the transfer, but so does the chance of the TCP sender
leaving Slow Start due to loss or reaching the capacity
limit. Remember, though, that this is only the benefit of
using multi-streaming as opposed to sending the multiple
streams sequentially without such mechanism.

X. CONCLUSION

Historically, the Internet community has worked to improve
throughput and resource utilization. There is, however, a grow-
ing awareness that latency is today often the key limiting factor
for user experience. This is in part driven by an increasing
number of latency-sensitive interactive Web and cloud based
applications, and in part by increasing amounts of capacity
becoming available over the Internet. In contrast to bandwidth,
where the bottleneck link determines the capacity available
for a communication session, the latency experienced by a
communication session is additive in nature where a number
of different sources may contribute to the experienced latency.
In this work we aimed to identify the different sources of
delay that may affect a communication session, providing a
structured overview of the latency problem, and to survey
available techniques for reducing latency as well as their merits.

Structural delays, such as placement of servers and subop-
timal routes can contribute significantly to latency. Structural
delays are particularly problematic in less developed parts of
the Internet where CDNs and other caching infrastructure are
lacking and peering agreements often add significant routing
stretch.

Various interactions between the endpoints are also a source
of latency. For short flows, initialization delays can contribute
a significant component of the experienced latency, but they
do not affect per-message latency once the initialization phase
is completed. While loss may only occasionally occur, packet
loss recovery delays often contribute significantly to the higher
percentile delays experienced by short flows and individual
messages, giving significant impact on user-perceived perfor-
mance. As previously discussed in Section III-C, it has been
found that Web flows experiencing loss see a fivefold increase

in completion times on average, making loss recovery delays a
dominating factor for Web latency.

Several sources of delay accumulate along the transmission
path. Here, queuing delay is of particular importance as exces-
sive queue build-ups may increase the latency by several orders
of magnitude. This has spurred renewed interest in AQM,
as underlined in 2013 by the creation of an AQM Working
Group in the IETF and the requirement to use AQM in the
latest DOCSIS standard. Further work on AQM, as well as the
interaction with transport-based queue control, are important
topics moving forward.

The way in which link capacity is being used and shared also
contributes to overall latency. As link capacities keep increasing
while the majority of flows over the Internet remain small,
scalable methods for rapidly sensing available capacity become
increasingly important. Closely related to the issue of queuing
delays, methods for capacity sharing that not only provide a
suitable service for the flow itself, but also limit the collateral
damage imposed on other flows can also impact the latency
experienced.

Intra-end-host delays, in the form of protocol stack buffering
and operating system delays, can contribute significant latency.
Good progress is being made in removing such delays due to
the efforts of the bufferbloat project among others.

The gains of select key techniques for reducing latency in
relation to the difficulty or cost of deployment have been esti-
mated in this survey. Such estimates are inherently imprecise as
many factors influence the gain obtained in a specific scenario
and fully comparable baseline cases are hard to establish. Nev-
ertheless, we find the estimation important for furthering the
understanding of the possible solution space and its limitations.
As can be seen in Fig. 21(a) and (b), the vertical extent of the
bubbles is large for many of the solutions. This is a reflection of
the fact that many important sources of latency are intermittent
in nature, including queuing delay and loss recovery delay. The
associated solution techniques remove or reduce the resulting
occasional large delays and make the latency more predictable.

Reducing latency for the benefit of Internet users constitutes
a key challenge for the networking community over the coming
years. As should have become clear, removing all the sources
of latency is a multifaceted undertaking and will require com-
bining the various different competencies in the scientific and
industrial communities in a collective effort. By identifying key
sources of latency, highlighting the various techniques that can
be applied to reduce latency and outlining the gains that can
be expected from such techniques in relation to the cost and
difficulty of deployment, it is our hope that this paper can serve
as a starting point to further drive this important work forward.

ACKNOWLEDGMENT

This work was inspired by an unpublished survey by Nick
Gates of BT and the University of Cambridge and Bob Briscoe,
Philip Eardley and Carla Di Cairano Gilfedder of BT. The
work also benefited from the discussions at the ISOC Latency
Workshop in London, where an early (2pp) version of the
survey was presented [339], and suggestions from the anony-
mous reviewers and Dave Täht’s public review of a preprint.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

BRISCOE et al.: REDUCING INTERNET LATENCY 2189

We would also like to thank James Sterbenz and Joe Touch
for their excellent text on this subject, which is recommended
reading; “High-speed networking—A systematic approach to
high-bandwidth low-latency communication” [340].

REFERENCES

[1] E. Schurman and J. Brutlag, “Performance related changes and their user
impact,” in Proc. Velocity Web Perform. Oper. Conf., Jun. 2009, pp. 1–13.
[Online]. Available: http://tinyurl.com/yg3xbhk

[2] M. Mayer, “In Search of . . . a Better, Faster, Stronger Web,” in Proc.
Velocity, 2009 (Online video no longer available), Jun. 2009.

[3] T. Zou et al., “Making time-stepped applications tick in the cloud,” in
Proc. ACM SOCC, 2011, pp. 1–14.

[4] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching
Architecture, RFC 3031 (Proposed Standard), Updated by RFCs 6178,
6790, Internet Engineering Task Force, Jan. 2001.

[5] Y. Rekhter, T. Li, and S. Hares, A Border Gateway Protocol 4 (BGP-4),
RFC 4271 (Draft Standard), Updated by RFCs 6286, 6608, 6793, Inter-
net Engineering Task Force, Jan. 2006.

[6] J. Moy, OSPF Version 2, RFC 2328 (INTERNET STANDARD), Up-
dated by RFCs 5709, 6549, 6845, 6860, Internet Engineering Task Force,
Apr. 1998.

[7] H. Xie, L. Qiu, Y. Yang, and Y. Zhang, “On self adaptive routing in
dynamic environments—An evaluation and design using a simple, prob-
abilistic scheme,” in Proc. IEEE ICNP, Oct. 2004, pp. 12–23.

[8] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC 2992
(Informational), Internet Engineering Task Force, Nov. 2000.

[9] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault, Multi-
Topology (MT) Routing in OSPF, RFC 4915 (Proposed Standard), Inter-
net Engineering Task Force, Jun. 2007.

[10] F. Valera, I. V. Beijnum, A. Garcia-Martinez, and M. Bagnulo, “Multi-
path BGP: Motivations and solutions,” in OpenAIRE: Open Access In-
frastructure for Research in Europe, vol. 216372. Cambridge, U.K.:
Cambridge Univ. Press, 2011, pp. 1–20. [Online]. Available: http://orff.
uc3m.es/handle/10016/10324

[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation With Multiple Addresses, RFC 6824 (Experi-
mental), Internet Engineering Task Force, Jan. 2013.

[12] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, Architectural
Guidelines for Multipath TCP Development, RFC 6182 (Informational),
Internet Engineering Task Force, Mar. 2011.

[13] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint rout-
ing and rate control,” ACM SIGCOMM CCR, vol. 35, no. 2, pp. 5–12,
Apr. 2005. [Online]. Available: http://www.statslab.cam.ac.uk/~frank/
PAPERS/kv.html

[14] Apple, iOS: Multipath TCP support in iOS 7, Cupertino, CA, USA,
Jan. 2014. [Online]. Available: http://support.apple.com/kb/HT5977

[15] M. Scharf and A. Ford, Multipath TCP (MPTCP) Application Interface
Considerations, RFC 6897 (Informational), Internet Engineering Task
Force, Mar. 2013.

[16] M. X. Makkes, A. Oprescu, R. Srijkers, and R. Meijer, “MeTRO: Low
latency network paths with routers-on-demand,” in Proc. Eur. –Par , Par-
allel Process. Workshops, Springer Lecture Notes in Computer Science,
Oct. 2013, pp. 333–342.

[17] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” IEEE/ACM Trans. Netw., vol. 10, no. 5,
pp. 589–603, Oct. 2002.

[18] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig, “Comparing
DNS resolvers in the wild,” in Proc. ACM IMC, Melbourne, Vic.,
Australia, 2010, pp. 15–21.

[19] T. Callahan, M. Allman, and M. Rabinovich, “On modern DNS behav-
ior and properties,” ACM SIGCOMM CCR, vol. 43, no. 3, pp. 7–15,
Jul. 2013.

[20] S. Sundaresan, N. Magharei, N. Feamster, and R. Teixeira, “Accelerating
last-mile web performance with popularity-based prefetching,” ACM
SIGCOMM CCR, vol. 42, no. 4, pp. 303–304, Aug. 2012.

[21] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A plat-
form for high-performance Internet applications,” ACM SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[22] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Bustamante, “Content
delivery and the natural evolution of DNS: Remote DNS trends, per-
formance issues and alternative solutions,” in Proc. ACM IMC, Boston,
MA, USA, 2012, pp. 523–536.

[23] G. Barish and K. Obraczka, “World wide web caching: Trends and
techniques,” IEEE Commun. Mag., vol. 38, no. 5, pp. 178–184,
May 2000.

[24] S. Podlipnig and L. Böszörmenyi, “Replacement strategies for quality
based video caching,” in Proc. IEEE ICME, 2002, vol. 2, pp. 49–52.

[25] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM CSUR, vol. 35, no. 4, pp. 374–398, Dec. 2003.

[26] T. M. Kroeger, D. D. Long, and J. C. Mogul, “Exploring the bounds of
web latency reduction from caching and prefetching,” in Proc. USITS,
1997, pp. 13–22.

[27] A. Dan, M. G. Kienzle, and D. Sitaram, “A dynamic policy of segment
replication for load-balancing in video-on-demand servers,” Multimedia
Syst., vol. 3, no. 3, pp. 93–103, Jul. 1995.

[28] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22–28,
Mar. 2003.

[29] L. Kontothanassis, Content Delivery Considerations for Different Types
of Internet Video, ACM MMSys, Portland, OR, USA, 2012. [Online].
Available: http://www.mmsys.org/?q=node/64

[30] Y. Chen, S. Jain, V. K. Adhikari, and Z.-L. Zhang, “Characterizing
roles of front-end servers in end-to-end performance of dynamic content
distribution,” in Proc. ACM IMC, 2011, pp. 559–568.

[31] M. Saxena, U. Sharan, and S. Fahmy, “Analyzing video services in Web
2.0: A global perspective,” in Proc. ACM NOSSDAV , 2008, pp. 39–44.

[32] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “The par-
tial migration of game state and dynamic server selection to re-
duce latency,” Multimedia Tools Appl., vol. 45, no. 1–3, pp. 83–107,
Oct. 2009.

[33] Y. Chen, S. Byna, and X.-H. Sun, “Data access history cache and associ-
ated data prefetching mechanisms,” in Proc. ACM/IEEE SC, Reno, NV,
USA, 2007, pp. 1–12.

[34] F. T. Johnsen, T. Hafsøe, C. Griwodz, and P. Halvorsen, “Workload
characterization for news-on-demand streaming services,” in Proc. IEEE
IPCCC, Apr. 2007, pp. 314–323.

[35] L. Pantel and L. Wolf, “On the suitability of dead reckoning schemes for
games,” in Proc. Annu. Workshop NetGames, Apr. 2002, pp. 79–84.

[36] W. Palant, C. Griwodz, and P. Halvorsen, “Evaluating dead reckoning
variations with a multi-player game simulator,” in Proc. ACM NOSS-
DAV , B. N. Levine and M. Claypool, Eds., 2006, pp. 20–25.

[37] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski,
“High-quality video view interpolation using a layered representation,”
ACM Trans. Graph., vol. 23, no. 3, pp. 600–608, Aug. 2004. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1015706.1015766

[38] D. Cohen-Or, “Model-based view-extrapolation for interactive VR
Web-systems,” in Proc. Comput. Graph. Int., 1997, pp. 104–112.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=601282

[39] D. Cohen-Or, Model-based view extrapolation for interactive virtual
reality systems, U.S. Patent 6 307 567 B1, Oct. 23, 2001. [Online].
Available: http://www.google.com/patents/US6307567

[40] A. Kumar, S. Merugu, J. J. Xu, E. W. Zegura, and X. Yu, “Ulysses:
A robust, low-diameter, low-latency peer-to-peer network,” Eur. Trans.
Telecommun., vol. 15, no. 6, pp. 571–587, Nov./Dec. 2004.

[41] T. Small, B. Li, and B. Liang, “Outreach: Peer-to peer topology con-
struction towards minimized server bandwidth costs,” IEEE J. Sel. Areas
Commun., vol. 25, no. 1, pp. 35–45, Jan. 2007.

[42] K.-H. Vik, “Group communication techniques in overlay networks,”
Ph.D. dissertation, Simula Research Laboratory/University of Oslo,
Oslo, Norway, Dec. 2008. [Online]. Available: https://simula.no/
publications/Simula.simula.20

[43] Application-Layer Traffic Optimization (alto), 2014. [Online]. Available:
http://datatracker.ietf.org/wg/alto/

[44] Amazon, Amazon EC2 instance types, Seattle, WA, USA. [Online].
Available: http://aws.amazon.com/ec2/instance-types/

[45] Microsoft, Windows azure, Redmond, WA, USA, 2013. [Online].
Available: http://www.windowsazure.com/

[46] Google, Google compute engine, Mountain View, CA, USA, 2013.
[Online]. Available: https://cloud.google.com/products/compute-engine

[47] G. Armitage, “Optimising online FPS game server discovery through
clustering servers by origin autonomous system,” in Proc. ACM NOSS-
DAV , Braunschweig, Germany, May 2008, pp. 3–8.

[48] P. Beskow, A. Petlund, G. Erikstad, C. Griwodz, and P. Halvorsen,
“Reducing game latency by migration, core-selection and TCP modi-
fications,” IJAMC, vol. 4, no. 4, pp. 343–363, Nov. 2010.

[49] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct.–Dec. 2009.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://tinyurl.com/yg3xbhk
http://orff.uc3m.es/handle/10016/10324
http://orff.uc3m.es/handle/10016/10324
http://www.statslab.cam.ac.uk/~frank/PAPERS/kv.html
http://www.statslab.cam.ac.uk/~frank/PAPERS/kv.html
http://support.apple.com/kb/HT5977
http://www.mmsys.org/?q=node/64
http://portal.acm.org/citation.cfm?doid=1015706.1015766
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601282
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=601282
http://www.google.com/patents/US6307567
https://simula.no/publications/Simula.simula.20
https://simula.no/publications/Simula.simula.20
http://datatracker.ietf.org/wg/alto/
http://aws.amazon.com/ec2/instance-types/
http://www.windowsazure.com/
https://cloud.google.com/products/compute-engine

2190 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

[50] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proc. ACM MMSys, Phoenix,
AZ, USA, 2010, pp. 35–46.

[51] K. Raaen, A. Petlund, and P. Halvorsen, “Is today’s public cloud suited to
deploy hardcore realtime services?” in Proc. Eur. –Par , Parallel Process.
Workshops, Lecture Notes in Computer Science, 2013, pp. 343–352.

[52] “Single root I/O virtualization,” PCI-SIG, Specification v1.1 2009.
[Online]. Available: http://www.pcisig.com/members/downloads/
specifications/iov/sr-iov1_1_20Jan10.pdf

[53] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, RFC 5246 (Proposed Standard), Updated by RFCs 5746,
5878, 6176, Internet Engineering Task Force, Aug. 2008.

[54] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange,
MinimaLT: Minimal-latency networking through better security, Univ.
Illinois Chicago, Chicago, IL, USA, Cryptology ePrint Archive, Rep.
2013/310, May 2013. [Online]. Available: http://eprint.iacr.org/2013/310

[55] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
Internet Draft draft-ietf-tcpm-fastopen, Jul. 2014, Work in progress.

[56] S. Frankel and S. Krishnan, IP Security (IPsec) and Internet Key Ex-
change (IKE) Document Roadmap, RFC 6071 (Informational), Internet
Engineering Task Force, Feb. 2011.

[57] J. Postel, Transmission Control Protocol, RFC 793 (INTERNET STAN-
DARD), Updated by RFCs 1122, 3168, 6093, 6528, Internet Engineering
Task Force, Sep. 1981.

[58] A. Langley, N. Modadugu, and B. Moeller, “Transport Layer Security
(TLS) False Start,” Internet Draft draft-bmoeller-tls-falsestart, Jun. 2010,
Work in progress.

[59] A. Langley, “Transport Layer Security (TLS) Snap Start,” Internet Draft
draft-agl-tls-snapstart-00, Jun. 2010, Work in progress.

[60] A. Bittau et al., “Cryptographic Protection of TCP Streams (tcpcrypt),”
Internet Draft draft-bittau-tcp-crypt-03, Sep. 2012, Work in progress.

[61] R. Stewart, Stream Control Transmission Protocol, RFC 4960 (Proposed
Standard), Updated by RFCs 6096, 6335, Internet Engineering Task
Force, Sep. 2007.

[62] E. Kohler, M. Handley, and S. Floyd, Datagram Congestion Con-
trol Protocol (DCCP), RFC 4340 (Proposed Standard), Updated by
RFCs 5595, 5596, 6335, 6773, Internet Engineering Task Force,
Mar. 2006.

[63] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, RFC 3168 (Proposed Stan-
dard), Updated by RFCs 4301, 6040, Internet Engineering Task Force,
Sep. 2001.

[64] D. Wing and A. Yourtchenko, Happy Eyeballs: Success With Dual-Stack
Hosts, RFC 6555 (Proposed Standard), Internet Engineering Task Force,
Apr. 2012.

[65] D. Wing and P. Natarajan, Happy Eyeballs: Trending Towards Suc-
cess With SCTP, Internet Draft draft-wing-tsvwg-happy-eyeballs-sctp,
Oct. 2010, Work in progress.

[66] J. Rosenberg et al., SIP: Session Initiation Protocol, RFC 3261 (Pro-
posed Standard), Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621,
5626, 5630, 5922, 5954, 6026, 6141, 6665, 6878, Internet Engineering
Task Force, Jun. 2002.

[67] J. Rosenberg, Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer Pro-
tocols, RFC 5245 (Proposed Standard), Updated by RFC 6336, Internet
Engineering Task Force, Apr. 2010.

[68] S. Guha and P. Francis, “Characterization and measurement of TCP
traversal through NATs and firewalls,” in Proc. ACM IMC, Berkeley,
CA, USA, 2005, pp. 199–211.

[69] J. Maenpaa, V. Andersson, G. Camarillo, and A. Keranen, “Impact of
network address translator traversal on delays in peer-to-peer session
initiation protocol,” in Proc. IEEE GLOBECOM, 2010, pp. 1–6.

[70] R. Mahy, P. Matthews, and J. Rosenberg, Traversal Using Relays around
NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN), RFC 5766 (Proposed Standard), Internet Engineering Task
Force, Apr. 2010.

[71] R. Braden, T/TCP—TCP Extensions for Transactions Functional Spec-
ification, RFC 1644 (Historic), Obsoleted by RFC 6247, Internet Engi-
neering Task Force, Jul. 1994.

[72] C. Hannum, “T/TCP vulnerabilities,” Phrack Mag., vol. 8, no. 53,
Jul. 1998. [Online]. Available: http://phrack.org/issues/53/6.html

[73] L. Eggert, Moving the Undeployed TCP Extensions RFC 1072, RFC
1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379, RFC 1644, RFC
1693 to Historic Status, RFC 6247 (Informational), Internet Engineering
Task Force, May 2011.

[74] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP
Fast Open,” in Proc. ACM Int. CoNEXT , Tokyo, Japan, 2011, pp. 1–12.

[75] W. Zhou, Q. Li, M. Caesar, and P. Godfrey, “ASAP: A low-latency
transport layer,” in Proc. ACM SIGCOMM, pp. 390–391.

[76] T. Berners-Lee, R. Fielding, and H. Frystyk, Hypertext Transfer
Protocol—HTTP/1.0, RFC 1945 (Informational), Internet Engineering
Task Force, May 1996.

[77] R. Fielding et al., Hypertext Transfer Protocol—HTTP/1.1, RFC 2616
(Draft Standard), Updated by RFCs 2817, 5785, 6266, 6585, Internet
Engineering Task Force, Jun. 1999.

[78] M. Belshe and R. Peon, “SPDY Protocol,” Internet Draft draft-mbelshe-
httpbis-spdy, Feb. 2012, Work in progress.

[79] K. Lahey, TCP Problems With Path MTU Discovery, RFC 2923 (Infor-
mational), Internet Engineering Task Force, Sep. 2000.

[80] P. Savola, MTU and Fragmentation Issues With In-the-Network Tun-
neling, RFC 4459 (Informational), Internet Engineering Task Force,
Apr. 2006.

[81] M. Mathis and J. Heffner, Packetization Layer Path MTU Discov-
ery, RFC 4821 (Proposed Standard), Internet Engineering Task Force,
Mar. 2007.

[82] J. Touch and M. Townsley, “Tunnels in the Internet Architecture,” Inter-
net Draft draft-ietf-intarea-tunnels-00, Mar. 2010, Work in progress.

[83] E. Rescorla and N. Modadugu, Datagram Transport Layer Security
Version 1.2, RFC 6347 (Proposed Standard), Internet Engineering Task
Force, Jan. 2012.

[84] A. Langley, TLS Next Protocol Negotiation, Google Technical Note:
nextprotoneg, Jul. 2011.

[85] A. Langley, Transport Layer Security (TLS) next protocol negotiation
extension, Internet Draft draft-agl-tls-nextprotoneg-04, May 2012,
Work in progress. [Online]. Available: http://tools.ietf.org/html/
draft-agl-tls-nextprotoneg

[86] S. Friedl, A. Popov, A. Langley, and E. Stephan, “Transport
Layer Security (TLS) application layer protocol negotiation ex-
tension,” Internet Draft draft-ietf-tls-applayerprotoneg, Mar. 2014,
(Work in progress). [Online]. Available: http://tools.ietf.org/html/
draft-ietf-tls-applayerprotoneg

[87] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, Transport Layer
Security (TLS) Session Resumption Without Server-Side State, RFC 5077
(Proposed Standard), Internet Engineering Task Force, Jan. 2008.

[88] E. Stark, L.-S. Huang, D. Israni, C. Jackson, and D. Boneh, “The case
for prefetching and prevalidating TLS server certificates,” in Proc. NDSS
Symp., 2012, pp. 1–12.

[89] E. Rescorla, “New Handshake Flows for TLS 1.3,” Internet Draft
draft-rescorla-tls13-new-flows, Feb. 2014, Work in progress. [Online].
Available: https://tools.ietf.org/html/draft-rescorla-tls13-new-flows

[90] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst,
The Lightweight User Datagram Protocol (UDP-Lite), RFC 3828 (Pro-
posed Standard), Updated by RFC 6335, Internet Engineering Task
Force, Jul. 2004.

[91] T. Flach et al., “Reducing web latency: The virtue of gentle aggression,”
in Proc. ACM SIGCOMM, Hong Kong, 2013, pp. 159–170.

[92] G. Fairhurst and L. Wood, Advice to Link Designers on Link Automatic
Repeat reQuest (ARQ), RFC 3366 (Best Current Practice), Internet En-
gineering Task Force, Aug. 2002.

[93] M. Watson, A. Begen, and V. Roca, Forward Error Correction (FEC)
Framework, RFC 6363 (Proposed Standard), Internet Engineering Task
Force, Oct. 2011.

[94] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad, Stream Con-
trol Transmission Protocol (SCTP) Partial Reliability Extension,
RFC 3758 (Proposed Standard), Internet Engineering Task Force,
May 2004.

[95] B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly deliv-
ery of streaming media,” in Proc. IEEE ICNP, Nov. 2000, pp. 165–176.

[96] D. McCreary, K. Li, S. Watterson, and D. Lowenthal, “TCP-RC: A
receiver-centered TCP protocol for delay-sensitive applications,” in
Proc. SPIE/ACM Annu. MMCN, Jan. 2005, vol. 5680, pp. 126–130.

[97] P. Hurtig, A. Brunström, A. Petlund, and M. Welzl, “TCP and SCTP
RTO Restart,” Internet Draft draft-ietf-tcpm-rtorestart, Jul. 2014,
Work in progress. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-tcpm-rtorestart

[98] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig, Early
Retransmit for TCP and Stream Control Transmission Protocol (SCTP),
RFC 5827 (Experimental), Internet Engineering Task Force, May 2010.

[99] M. Mellia, M. Meo, and C. Casetti, “TCP smart framing: A segmentation
algorithm to reduce TCP latency,” IEEE/ACM Trans. Netw., vol. 13,
no. 2, pp. 316–329, Apr. 2005.

[100] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis, “Tail
Loss Probe (TLP): An Algorithm for Fast Recovery of Tail
Losses,” Internet Draft draft-dukkipati-tcpm-tcp-loss-probe, Work in

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1_1_20Jan10.pdf
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1_1_20Jan10.pdf
http://eprint.iacr.org/2013/310
http://phrack.org/issues/53/6.html
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg
http://tools.ietf.org/html/draft-ietf-tls-applayerprotoneg
https://tools.ietf.org/html/draft-rescorla-tls13-new-flows
http://tools.ietf.org/html/draft-ietf-tcpm-rtorestart
http://tools.ietf.org/html/draft-ietf-tcpm-rtorestart

BRISCOE et al.: REDUCING INTERNET LATENCY 2191

progress, Feb. 2013. [Online]. Available: http://tools.ietf.org/html/
draft-dukkipati-tcpm-tcp-loss-probe

[101] O. Tickoo, V. Subramanian, S. Kalyanaraman, and K. Ramakrishnan,
“LT-TCP: End-to-end framework to improve TCP performance over net-
works with lossy channels,” in Proc. IWQoS, Lecture Notes in Computer
Science, Passau, Germany, Jun. 2005, pp. 81–93.

[102] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, “Loss-Tolerant TCP
(LT-TCP): Implementation and experimental evaluation,” in Proc. IEEE
MILCOM, Orlando, FL, USA, Oct. 2012, pp. 1–6.

[103] K. Evensen, A. Petlund, C. Griwodz, and P. Halvorsen, “Redun-
dant bundling in TCP to reduce perceived latency for time-dependent
thin streams,” IEEE Commun. Lett., vol. 12, no. 4, pp. 334–336,
Apr. 2008.

[104] S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
CCR, vol. 24, no. 5, pp. 8–23, Oct. 1994.

[105] B. Briscoe, J. Kaippallimalil, and P. Thalerm, “Guidelines for
Adding Congestion Notification to Protocols That Encapsulate IP,”
Internet Draft draft-ietf-tsvwg-ecn-encap-guidelines, Mar. 2014,
Work in progress. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-tsvwg-ecn-encap-guidelines-04

[106] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC 896, Inter-
net Engineering Task Force, Jan. 1984.

[107] R. Braden, Requirements for Internet Hosts—Communication Layers,
RFC 1122 (Internet Standard), Updated by RFCs 1349, 4379, 5884,
6093, 6298, 6633, 6864, Internet Engineering Task Force, Oct. 1989.

[108] G. Minshall, “A Proposed Modification to Nagle’s Algorithm,” Inter-
net Draft draft-minshall-nagle, Jun. 1999, Work in progress. [Online].
Available: http://tools.ietf.org/html/draft-minshall-nagle

[109] S. Cheshire, TCP Performance Problems Caused by Interaction Between
Nagle’s Algorithm and Delayed ACK, May 2005. [Online]. Available:
http://www.stuartcheshire.org/papers/NagleDelayedAck/

[110] E. Ciaramella, “Wavelength conversion and all-optical regeneration:
Achievements and open issues,” J. Lightw. Technol., vol. 30, no. 4,
pp. 572–582, Feb. 2012.

[111] N. V. Wheeler et al., “Wide-bandwidth, low-loss, 19-cell hollow core
photonic band gap fiber and its potential for low latency data transmis-
sion,” in Proc. Nat. Fiber Opt. Eng. Conf., 2012, pp. 1–3.

[112] The Importance of Dynamic Bandwidth Allocation in GPON Networks,
White Paper, PMC-Sierra, Sep. 2008.

[113] I. Rubin, The Communications Handbook, vol. Chapter 35,
J. Gibson, Ed. New York, NY, USA: Taylor & Francis, 2002,
ser. Electrical Engineering Handbook.

[114] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov,
TCP Over Second (2.5G) and Third (3 G) Generation Wireless Networks,
RFC 3481 (Best Current Practice), Internet Engineering Task Force,
Feb. 2003.

[115] M. Sooriyabandara and G. Fairhurst, “Dynamics of TCP over BoD satel-
lite networks,” Int. J. Satell. Commun. Netw., vol. 21, no. 4/5, pp. 427–
449, Jul.–Oct. 2003.

[116] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE, Std. 802.11-2007, Jun. 12, 2007.

[117] D. Skordoulis et al., “IEEE 802.11n MAC frame aggregation mech-
anisms for next-generation highthroughput WLANs,” IEEE Wireless
Commun., vol. 15, no. 1, pp. 40–47, Feb. 2008.

[118] Y. Lin and V. Wong, “Frame aggregation and optimal frame size adap-
tation for IEEE 802.11n WLANs,” in Proc. IEEE GLOBECOM, 2006,
pp. 1–6.

[119] D. Shen et al., “The performance of adaptive frame aggregation with
delay limits in ultrahigh-speed WLAN,” in Proc. 12th IEEE ICCT , 2010,
pp. 1364–1368.

[120] S. Biaz and S. Wu, “Rate adaptation algorithms for IEEE 802.11 net-
works: A survey and comparison,” in Proc. IEEE ISCC, Jul. 2008,
pp. 130–136.

[121] E. Ancillotti, R. Bruno, and M. Conti, “Experimentation and performance
evaluation of rate adaptation algorithms in wireless mesh networks,” in
Proc. ACM Sym. PE-WASUN, Vancouver, BC, Canada, 2008, pp. 7–14.

[122] E. Ancillotti, R. Bruno, and M. Conti, “Design and performance eval-
uation of throughput-aware rate adaptation protocols for IEEE 802.11
wireless networks,” Perform. Eval., vol. 66, no. 12, pp. 811–825,
Dec. 2009.

[123] K. G. Shin and S. W. Daniel, “Analysis and implementation of hy-
brid switching,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 2,
pp. 211–219, May 1995.

[124] Z. Cui, L. Xia, P. G. Bridges, P. A. Dinda, and J. R. Lange, “Optimizing
overlay-based virtual networking through optimistic interrupts and cut-
through forwarding,” in Proc. ACM/IEEE Conf. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Salt Lake City, UT, USA, 2012, pp. 1–11.

[125] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Proc. 2nd IEEE/ACM Int. Symp.
NOCS, 2008, pp. 161–170.

[126] C. Shannon, “Communication in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[127] F. Foukalas, V. Gazis, and N. Alonistioti, “Crosslayer design proposals
for wireless mobile networks: A survey and taxonomy,” IEEE Commun.
Surveys Tuts., vol. 10, no. 1, pp. 70–85, 2008.

[128] D. Kliazovich, S. Redana, and F. Granelli, “Crosslayer error recovery in
wireless access networks: The ARQ proxy approach,” Int. J. Commun.
Syst., vol. 25, no. 4, pp. 461–477, Apr. 2012.

[129] “Leveraging VDSL2 for mobile backhaul: Meeting the long-term
challenges in the mobile broadband era,” Alcatel-Lucent, Boulogne-
Billancourt, France, 2010. [Online]. Available: http://resources.
alcatel-lucent.com/?cid=142941

[130] D. M. Divakaran, S. Soudan, P. Primet, and E. Altman, “A survey
on core switch designs and algorithms,” INRIA, Valbonne, France,
Tech. Rep. RR-6942, May 2009. [Online]. Available: http://hal.inria.fr/
inria-00388943

[131] N. McKeown, Internet Routers: Past, Present and Future, Lecture for
BCS Ada Lovelace Award, Jun. 2006. [Online]. Available: http://yuba.
stanford.edu/~nickm/talks/

[132] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in Proc. IEEE GLOBECOM, Nov. 2004, vol. 3,
pp. 1629–1634.

[133] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proc.
USENIX Workshop Hot-ICE, San Jose, CA, USA, 2012, pp. 1–6.

[134] C. Fraleigh, F. Tobagi, and C. Diot, “Provisioning IP backbone networks
to support latency sensitive traffic,” in Proc. IEEE INFOCOM, 2003,
vol. 1, pp. 375–385.

[135] J. Gettys, “Bufferbloat: Dark buffers in the Internet,” IEEE Internet
Comput., vol. 15, no. 3, pp. 96–96, May/Jun. 2011.

[136] D. Genin and J. Splett, “Where in the Internet Is Congestion?,” Cornell
Univ. Library, Ithaca, NY, USA, Jul. 2013. [Online]. Available: http://
arxiv.org/abs/1307.3696

[137] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Character-
izing residential broadband networks,” in Proc. ACM IMC, San Diego,
CA, USA, 2007, pp. 43–56.

[138] C. Kachris and I. Tomkos, “A survey on optical interconnects for data
centers,” IEEE Commun. Surveys Tuts., vol. 14, no. 4, pp. 1021–1036,
Fourth Quarter, 2012.

[139] M. Maier and M. Reisslein, “Trends in optical switching tech-
niques: A short survey,” IEEE Netw., vol. 22, no. 6, pp. 42–47,
Nov. 2008.

[140] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: An
approach to high-bandwidth optical WANs,” IEEE Trans. Commun.,
vol. 40, no. 7, pp. 1171–1182, Jul. 1992.

[141] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching: A new area in
optical networking research,” IEEE Netw., vol. 18, no. 3, pp. 16–23,
May/Jun. 2004.

[142] P. Chandra, A. Turuk, and B. Sahoo, “Survey on optical burst switching
in WDM networks,” in Proc. IEEE ICIIS, 2009, pp. 83–88.

[143] “Bufferbloat: What’s wrong with the Internet?” Commun. ACM, vol. 55,
no. 2, pp. 40–47, Feb. 2012.

[144] D. Täht, Fixing Bufferbloat on Wireless or Not Every Packet Is Sacred,
Presentation, Nov. 2012. [Online]. Available: http://www.teklibre.com/
~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf

[145] Specification for 802.3 Full Duplex Operation and Physical Layer Spec-
ification for 100 Mb/s Operation on Two Pairs of Category 3 or Better
Balanced Twisted Pair Cable (100BASE-T2), IEEE Std. 802.3X-1997,
1997.

[146] R. Veeravalli, G. Armitage, J. But, and T. Nguyen, “Interactions Between
TCP and Ethernet Flow Control Over Netgear XAVB2001 HomePlug
AV links,” Centre Adv. Internet Archit., Swinburne Univ. Technology,
Melbourne, Vic., Australia, Tech. Rep. 130121A, Jan. 2013. [Online].
Available: http://caia.swin.edu.au/reports/130121A/CAIATR-130121A.
pdf

[147] A. S. Anghel, R. Birke, D. Crisan, and M. Gusat, “Cross-layer flow
and congestion control for datacenter networks,” in Proc. Workshop DC
CAVES, San Francisco, CA, USA, 2011, pp. 44–62.

[148] Media Access Control (MAC) Bridges and Virtual Bridges, IEEE Std.
802.1Q-2012, Dec. 13, 2012.

[149] F. Baker and G. Fairhurst, “Recommendations Regarding Active
Queue Management,” Internet Draft draft-ietf-aqm-recommendation,
Aug. 2014, Work in progress. [Online]. Available: http://tools.ietf.org/
html/draft-ietf-aqm-recommendation

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe
http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe
http://tools.ietf.org/html/draft-ietf-tsvwg-ecn-encap-guidelines-04
http://tools.ietf.org/html/draft-ietf-tsvwg-ecn-encap-guidelines-04
http://tools.ietf.org/html/draft-minshall-nagle
http://www.stuartcheshire.org/papers/NagleDelayedAck/
http://resources.alcatel-lucent.com/?cid=142941
http://resources.alcatel-lucent.com/?cid=142941
http://hal.inria.fr/inria-00388943
http://hal.inria.fr/inria-00388943
http://yuba.stanford.edu/~nickm/talks/
http://yuba.stanford.edu/~nickm/talks/
http://arxiv.org/abs/1307.3696
http://arxiv.org/abs/1307.3696
http://caia.swin.edu.au/reports/130121A/CAIATR-130121A.pdf
http://caia.swin.edu.au/reports/130121A/CAIATR-130121A.pdf
http://tools.ietf.org/html/draft-ietf-aqm-recommendation
http://tools.ietf.org/html/draft-ietf-aqm-recommendation
http://www.teklibre.com/~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf
http://www.teklibre.com/~d/bloat/Not_every_packet_is_sacred-Battling_Bufferbloat_on_wifi.pdf

2192 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

[150] G. Fairhurst, R. Secchi, and A. Yun, “A flexible QoS architecture for
DVB-RCS2,” Int. J. Satell. Commun. Netw., vol. 31, no. 5, pp. 219–232,
Sep./Oct. 2013.

[151] J. Sterbenz and G. Parulkar, “Axon: A high speed communication
architecture for distributed applications,” in Proc. IEEE INFOCOM,
San Francisco, CA, USA, 1990, pp. 415–425.

[152] D. Siemon, “Queueing in the Linux network stack,” Linux Jour-
nal, Houston, TX, USA, Sep. 2013 [Online]. Available: http://www.
linuxjournal.com/content/queueing-linux-network-stack

[153] J. Corbet, “Network Transmit Queue Limits,” Aug. 2011. [Online].http://
lwn.net/Articles/454390/

[154] R. Bush and D. Meyer, Some Internet Architectural Guidelines and
Philosophy, RFC 3439 (Informational), Internet Engineering Task Force,
Dec. 2002.

[155] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. ACM SIGCOMM, Portland, OR, USA, 2004, pp. 281–292.

[156] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
ACM SIGCOMM CCR, vol. 36, no. 1, pp. 87–92, Jan. 2006.

[157] Y. Ganjali and N. McKeown, “Update on buffer sizing in Internet
routers,” ACM SIGCOMM CCR, vol. 36, no. 5, pp. 67–70, Oct. 2006.

[158] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: Recent results and open problems,” ACM SIGCOMM
CCR, vol. 39, no. 2, pp. 34–39, Mar. 2009.

[159] V. Havary-Nassab, A. Koulakezian, and Y. Ganjali, “Denial of service
attacks in networks with tiny buffers,” in Proc. IEEE INFOCOM, Rio de
Janeiro, Brazil, 2009, pp. 91–96.

[160] K. Chandra, “Statistical multiplexing,” in Wiley Encyclopedia of
Telecommunications. Hoboken, NJ, USA: Wiley, 2003.

[161] K. Chan, J. Babiarz, and F. Baker, Aggregation of Diffserv Service
Classes, RFC 5127 (Informational), Internet Engineering Task Force,
Feb. 2008.

[162] S. Blake et al., An Architecture for Differentiated Services, RFC 2475
(Informational), Updated by RFC 3260, Internet Engineering Task
Force, Dec. 1998.

[163] K. Nichols, S. Blake, F. Baker, and D. Black, Definition of the Dif-
ferentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
RFC 2474 (Proposed Standard), Updated by RFCs 3168, 3260, Internet
Engineering Task Force, Dec. 1998.

[164] R. Braden, D. Clark, and S. Shenker, Integrated Services in the Internet
Architecture: An Overview, RFC 1633 (Informational), Internet Engi-
neering Task Force, Jun. 1994.

[165] J. Nagle, “On packet switches with infinite storage,” IEEE Trans.
Commun., vol. COM-35, no. 4, pp. 435–438, Apr. 1987.

[166] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” in Proc. ACM SIGCOMM, Austin, TX, USA,
1989, pp. 1–12.

[167] A. K. Parekh and R. G. Gallagher, “A generalized processor sharing
approach to flow control in integrated services networks: The multi-
ple node case,” IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137–150,
Apr. 1994.

[168] P. McKenney, “Stochastic fairness queueing,” in Proc. IEEE INFOCOM,
1990, vol. 2, pp. 733–740.

[169] M. Kallmes, D. Towsley, and C. Cassandras, “Optimality of the last-
in-first-out (LIFO) service discipline in queuing systems with real-time
constraints,” in Proc. IEEE Annu. CDC, 1989, pp. 1073–1074.

[170] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-
backpressure achieves near-optimal utility–delay tradeoff,” IEEE/ACM
Trans. Netw., vol. 21, no. 3, pp. 831–844, Jun. 2013.

[171] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[172] D. Ferrari and D. Verma, “A scheme for real-time channel establishment
in wide-area networks,” IEEE J. Sel. Areas Commun., vol. 8, no. 3,
pp. 368–379, Apr. 1990.

[173] N. Benameur, F. Guillemin, and L. Muscariello, “Latency Reduc-
tion in Home Access Gateways With Shortest Queue First,” in Proc.
ISOC Workshop Reducing Internet Latency, Sep. 2013, pp. 1–2.
[Online]. Available: http://www.Internetsociety.org/sites/default/files/
pdf/accepted/4_sqf_isoc.pdf

[174] G. Carofiglio and L. Muscariello, “On the impact of TCP and per-flow
scheduling on Internet performance,” IEEE/ACM Trans. Netw., vol. 20,
no. 2, pp. 620–633, Apr. 2012.

[175] S. Floyd and V. Jacobson, “Link-sharing and resource management mod-
els for packet networks,” IEEE/ACM Trans. Netw., vol. 3, no. 4, pp. 365–
386, Aug. 1995.

[176] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing algo-
rithms,” IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 675–689, Oct. 1997.

[177] I. Stoica, H. Zhang, and T. S. E. Ng, “A hierarchical fair service curve al-
gorithm for link-sharing, real-time, priority services,” IEEE/ACM Trans.
Netw., vol. 8, no. 2, pp. 185–199, Apr. 2000.

[178] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications—Amendment 8: Medium Access Control (MAC)
Quality of Service Enhancements, IEEE Std. 802.11e-2005, Nov. 11,
2005.

[179] F. Baker, J. Polk, and M. Dolly, A Differentiated Services Code Point
(DSCP) for Capacity-Admitted Traffic, RFC 5865 (Proposed Standard),
Internet Engineering Task Force, May 2010.

[180] J. Turner, “New directions in communications (or which way to the
information age?),” IEEE Commun. Mag., vol. 24, no. 10, pp. 8–15,
Oct. 1986.

[181] P. Kanuparthy and C. Dovrolis, “Shaperprobe: End to-end detection of
ISP traffic shaping using active methods,” in Proc. ACM IMC, Berlin,
Germany, 2011, pp. 473–482.

[182] M. Marcon, M. Dischinger, K. Gummadi, and A. Vahdat, “The local and
global effects of traffic shaping in the Internet,” in Proc. 3rd Int. Conf.
COMSNETS, 2011, pp. 1–10.

[183] F. Guillemin, P. Boyer, A. Dupuis, and L. Romoeuf, “Peak rate
enforcement in ATM networks,” in Proc. IEEE INFOCOM, 1992,
pp. 753–758.

[184] B. Briscoe et al., “Policing congestion response in an Internetwork us-
ing refeedback,” ACM SIGCOMM CCR, vol. 35, no. 4, pp. 277–288,
Aug. 2005.

[185] B. Briscoe, R. Woundy, A. Cooper, Congestion Exposure (ConEx) Con-
cepts and Use Cases, RFC 6789 (Informational), Internet Engineering
Task Force, Dec. 2012.

[186] T. V. Lakshman, A. Neidhardt, and T. Ott, “The drop from front strategy
in TCP and in TCP over ATM,” in Proc. IEEE INFOCOM, 1996, vol. 3,
pp. 1242–1250.

[187] R. Adams, “Active queue management: A survey,” IEEE Commun. Sur-
veys Tuts., vol. 15, no. 3, pp. 1425–1476, 2013.

[188] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[189] R. Pan et al., “PIE: A lightweight control scheme to address the
bufferbloat problem,” in Proc. IEEE 14th Int. Conf. HPSR, Jul. 2013,
pp. 148–155.

[190] K. Nichols and V. Jacobson, “Controlling queue delay,” ACM Queue,
vol. 10, no. 5, p. 20, May 2012.

[191] D. Y. Eun and X. Wang, “Achieving 100% throughput in TCP/AQM
under aggressive packet marking with small buffer,” IEEE/ACM Trans.
Netw., vol. 16, no. 4, pp. 945–956, Aug. 2008.

[192] Ł. Chróst, A. Brachman, A. Chydziński. “On the performance of AQM
algorithms with small buffers,” in Springer Computer Networks, ser.
Communications in Computer and Information Science, A. Kwiecień,
P. Gaj and P. Stera, Eds., vol. 39, Springer-Verlag, 2009, pp. 168–173

[193] N. Beheshti, Y. Ganjali, A. Goel, and N. McKeown, “Obtaining high
throughput in networks with tiny buffers,” in Proc. 16th IWQoS, 2008,
pp. 65–69.

[194] M. Alizadeh et al., “Data Center TCP (DCTCP),” in Proc. ACM SIG-
COMM, New Delhi, India, Sep. 2010, pp. 63–74.

[195] M. Alizadeh et al., “Less is more: Trading a little bandwidth for ultra-
low latency in the data center,” in Proc. 9th USENIX Symp. NSDI,
Apr. 2012, p. 19.

[196] B. Briscoe, G. Corlianó, and B. Strulo, “How to build a virtual queue
from two leaky buckets (and why one is not enough),” BT, U.K., Tech.
Rep. TR-DES8-2011-001, Apr. 2012. [Online]. Available: http://www.
bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf

[197] S. Islam, M. Welzl, and S. Gjessing, “One control to rule them
all—Coupled congestion control for RTP media,” in Proc. Packet
Video Workshop, San Jose, CA, USA, Dec. 2013, pp. 1–2. [Online].
Available: http://heim.ifi.uio.no/~michawe/research/publications/
pv2013-fse-poster-final.pdf

[198] M. Welzl, F. Niederbacher, and S. Gjessing, “Beneficial transparent de-
ployment of SCTP: The missing pieces,” in Proc. IEEE GLOBECOM,
2011, pp. 1–5.

[199] IETF, “RTP media congestion avoidance techniques (RMCAT),”
IETF Working Group Charter, Sep. 2012. [Online]. Available: http://
datatracker.ietf.org/doc/charter-ietf-rmcat/

[200] H. Jiang and C. Dovrolis, “Why is the Internet traffic bursty in short
time scales?” in Proc. ACM SIGMETRICS, Banff, AB, Canada, 2005,
pp. 241–252.

[201] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno
and SACK TCP,” ACM SIGCOMM CCR, vol. 26, no. 3, pp. 5–21,
Jul. 1996.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.linuxjournal.com/content/queueing-linux-network-stack
http://www.linuxjournal.com/content/queueing-linux-network-stack
http://lwn.net/Articles/454390/
http://lwn.net/Articles/454390/
http://www.Internetsociety.org/sites/default/files/pdf/accepted/4_sqf_isoc.pdf
http://www.Internetsociety.org/sites/default/files/pdf/accepted/4_sqf_isoc.pdf
http://www.bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf
http://www.bobbriscoe.net/projects/ipe2eqos/pcn/vq2lb/vq2lb_tr.pdf
http://heim.ifi.uio.no/~michawe/research/publications/pv2013-fse-poster-final.pdf
http://heim.ifi.uio.no/~michawe/research/publications/pv2013-fse-poster-final.pdf
http://datatracker.ietf.org/doc/charter-ietf-rmcat/
http://datatracker.ietf.org/doc/charter-ietf-rmcat/

BRISCOE et al.: REDUCING INTERNET LATENCY 2193

[202] K. Kobayashi, “Transmission timer approach for rate-based pacing
TCP with hardware support,” in Proc. Int. Workshop PFLDnet,
Feb. 2006, pp. 1–6. [Online]. Available: http://www.hpcc.jp/pfldnet2006/
paper/s3_01.pdf

[203] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the per-
formance of TCP pacing,” in Proc. IEEE INFOCOM, 2000, vol. 3,
pp. 1157–1165.

[204] D. Wischik, “Buffer sizing theory for bursty TCP flows,” Int. Zurich
Seminar Commun., pp. 98–101, 2006.

[205] D. X. Wei, P. Cao, and S. H. Low, “TCP Pacing Revisited,” 2006.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.92.2658&rep=rep1&type=pdf

[206] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
“Part III: Routers with very small buffers,” ACM SIGCOMM CCR,
vol. 35, no. 3, pp. 83–90, Jul. 2005.

[207] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
TCP (D2TCP),” in Proc. ACM SIGCOMM, Aug. 2012, pp. 115–126.

[208] A. Munir et al., “Minimizing flow completion times in data centers,” in
Proc. IEEE INFOCOM, Apr. 2013, pp. 2157–2165.

[209] B. Briscoe, M. Kühlewind, D. Wagner, and J. M. R. Espinosa, “Imme-
diate ECN,” in Proc IETF, Nov. 2013, pp. 1–21. [Online]. Available:
http://www.ietf.org/proceedings/88/slides/slides-88-tsvwg-20.pdf

[210] C. Jin, D. Wei, and S. Low, “The case for delay-based congestion con-
trol,” in Proc. IEEE 18th Annu. Workshop CCW, 2003, pp. 99–104.

[211] D. Clark, M. Lambert, and L. Zhang, NETBLT: A Bulk Data Transfer
Protocol, RFC 998 (Experimental), Internet Engineering Task Force,
Mar. 1987.

[212] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion avoid-
ance on a global Internet,” IEEE J. Sel. Areas Commun., vol. 13, no. 8,
pp. 1465–1480, Oct. 1995.

[213] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, Low Extra Delay
Background Transport (LEDBAT), RFC 6817 (Experimental), Internet
Engineering Task Force, Dec. 2012.

[214] D. A. Hayes and D. Ros, “Delay-based congestion control for low
latency,” in Proc. ISOC Workshop Reducing Internet Latency, Sep.
2013, pp. 1–2. [Online]. Available: http://www.Internetsociety.org/sites/
default/files/pdf/accepted/17_delay_cc_pos-v2.pdf

[215] D. Hayes and G. Armitage, “Revisiting TCP congestion control using
delay gradients,” in Proc. IFIP Netw., vol. 6641, Lecture Notes in Com-
puter Science, May 2011, pp. 328–341.

[216] Link Aggregation, IEEE Std. 802.1AX-2008, Nov. 3, 2008.
[217] M. Blanchet and P. Seite, Multiple Interfaces and Provisioning Domains

Problem Statement, RFC 6418 (Informational), Internet Engineering
Task Force, Nov. 2011.

[218] M. Wasserman and P. Seite, Current Practices for Multiple-Interface
Hosts, RFC 6419 (Informational), Internet Engineering Task Force,
Nov. 2011.

[219] C. Raiciu, M. Handley, and D. Wischik, Coupled Congestion Control
for Multipath Transport Protocols, RFC 6356 (Experimental), Internet
Engineering Task Force, Oct. 2011.

[220] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec,
“MPTCP is not Pareto-optimal: Performance issues and a possible solu-
tion,” in Proc. ACM 8th Int. CoNEXT , Dec. 2012, pp. 1–12.

[221] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Opportunis-
tic Linked-Increases Congestion Control Algorithm for MPTCP,” In-
ternet Draft draft-khalili-mptcp-congestion-control, Jul. 2014, Work in
progress.

[222] J. Iyengar, P. Amer, and R. Stewart, “Concurrent multipath transfer us-
ing SCTP multihoming over independent end-to-end paths,” IEEE/ACM
Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[223] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Proc. 19th IEEE ICNP, Vancouver,
BC, USA, Oct. 2011.

[224] V. Sharma, S. Kalyanaraman, K. Kar, K. Ramakrishnan, and
V. Subramanian, “MPLOT: A transport protocol exploiting multipath
diversity using erasure codes,” in Proc. IEEE INFOCOM, Phoenix, AZ,
USA, Apr. 2008, pp. 592–600.

[225] A. Vulimiri, O. Michel, P. Godfrey, and S. Shenker, “More is less: Re-
ducing latency via redundancy,” in Proc. 11th ACM Workshop HotNets,
Oct. 2012, pp. 13–18.

[226] Y.-C. Chen et al., “A measurement-based study of multipath TCP perfor-
mance over wireless networks,” in Proc. ACM IMC, Barcelona, Spain,
Oct. 2013, pp. 455–468.

[227] T. Zinner, K. Tutschku, A. Nakao, and P. Tran-Gia, “Performance eval-
uation of packet re-ordering on concurrent multipath transmissions for
transport virtualization,” Int. J. Commun. Netw. Distrib. Syst., vol. 6,
no. 3, pp. 322–340, Apr. 2011.

[228] F. Perotto, C. Casetti, and G. Galante, “SCTP-based transport protocols
for concurrent multipath transfer,” in Proc. IEEE WCNC, Mar. 2007,
pp. 2971–2976.

[229] A. Gurtov and T. Polishchuk, “Secure multipath transport for legacy
Internet applications,” in Proc. 6th Int. Conf. BROADNETS, Madrid,
Spain, Sep. 2009.

[230] K. Evensen, D. Kaspar, A. Hansen, C. Griwodz, and P. Halvorsen,
“Using multiple links to increase the performance of bandwidth-
intensive UDP-based applications,” in Proc. IEEE ISCC, Corfu, Greece,
Jun. 2011, pp. 1117–1122.

[231] M. Coudron, S. Secci, G. Pujolle, P. Raad, and P. Gallard, “Cross-layer
cooperation to boost multipath TCP performance in cloud networks,” in
Proc. IEEE Int. 2nd Conf. CloudNet, Nov. 2013, pp. 58–66.

[232] D. Li et al., “Multicast cloud with integrated multicast and unicast con-
tent distribution routing,” in Proc. Int. Workshop Web Content Caching
Distrib., F. Douglis and B. D. Davison, Eds., 2004, pp. 109–118.

[233] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
survey of application-layer multicast protocols,” IEEE Commun. Surveys
Tuts., vol. 9, no. 3, pp. 58–74, 2007.

[234] J. Ni and D. H. K. Tsang, “Large-scale cooperative caching and
application-level multicast in multimedia content delivery networks,”
IEEE Commun. Mag., vol. 43, no. 5, pp. 98–105, May 2005.

[235] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links,
RFC 1144 (Proposed Standard), Internet Engineering Task Force,
Feb. 1990.

[236] M. Degermark, B. Nordgren, and S. Pink, IP Header Compression,
RFC 2507 (Proposed Standard), Internet Engineering Task Force,
Feb. 1999.

[237] G. Pelletier, K. Sandlund, L.-E. Jonsson, and M. West, RObust Header
Compression (ROHC): A Profile for TCP/IP (ROHC-TCP), RFC 6846
(Proposed Standard), Internet Engineering Task Force, Jan. 2013.

[238] G. Pelletier and K. Sandlund, RObust Header Compression Version 2
(ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite, RFC 5225
(Proposed Standard), Internet Engineering Task Force, Apr. 2008.

[239] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control, RFC
5681 (Draft Standard), Internet Engineering Task Force, Sep. 2009.

[240] S. Floyd, HighSpeed TCP for Large Congestion Windows, RFC 3649
(Experimental), Internet Engineering Task Force, Dec. 2003.

[241] T. Kelly, “Scalable TCP: Improving performance in highspeed wide
area networks,” ACM SIGCOMM CCR, vol. 33, no. 2, pp. 83–91,
Apr. 2003.

[242] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[243] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation, ar-
chitecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

[244] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proc. IEEE
INFOCOM, Barcelona, Spain, Apr. 2006, pp. 1–12.

[245] S. Ha and I. Rhee, “Taming the elephants: New TCP slow start,” Comput.
Netw., vol. 55, no. 9, pp. 2092–2110, Jun. 2011.

[246] N. Dukkipati et al., “An argument for increasing TCP’s initial congestion
window,” ACM SIGCOMM CCR, vol. 40, no. 3, pp. 26–33, Jul. 2010.

[247] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, Increasing TCP’s Initial
Window, RFC 6928 (Experimental), Internet Engineering Task Force,
Apr. 2013.

[248] R. Sallantin et al., “Safe Increase of the TCP’s Initial Window Using Ini-
tial Spreading,” Internet Draft draft-irtf-iccrg-sallantin-initial-spreading-
00, Jan. 2014, Work in progress. [Online]. Available: http://tools.ietf.org/
html/draft-irtf-iccrg-sallantin-initial-spreading

[249] D. Liu, M. Allman, S. Jiny, and L. Wang, “Congestion control without a
startup phase,” in Proc. Int. Workshop PFLDnet, Feb. 2007, pp. 61–66.

[250] M. Scharf, “Comparison of end-to-end and network-supported fast
startup congestion control schemes,” Comput. Netw., vol. 55, no. 8,
pp. 1921–1940, Jun. 2011.

[251] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and J. Sterbenz, “A
swifter start for TCP,” BBN, Cambridge, MA, USA, Tech. Rep. 8339,
Mar. 2002.

[252] S. Keshav, “A control-theoretic approach to flow control,” in Proc. ACM
SIGCOMM, Zurich, Switzerland, 1991, pp. 3–15.

[253] V. Konda and J. Kaur, “RAPID: Shrinking the congestion-control
timescale,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, Apr. 2009,
pp. 1–9.

[254] M. Kuehlewind and B. Briscoe, “Chirping for congestion control—
Implementation feasibility,” in Proc. Int. Workshop PFLDnet,
Nov. 2010, pp. 1–7.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://www.hpcc.jp/pfldnet2006/paper/s3_01.pdf
http://www.hpcc.jp/pfldnet2006/paper/s3_01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdf
http://www.ietf.org/proceedings/88/slides/slides-88-tsvwg-20.pdf
http://www.Internetsociety.org/sites/default/files/pdf/accepted/17_delay_cc_pos-v2.pdf
http://www.Internetsociety.org/sites/default/files/pdf/accepted/17_delay_cc_pos-v2.pdf
http://tools.ietf.org/html/draft-irtf-iccrg-sallantin-initial-spreading
http://tools.ietf.org/html/draft-irtf-iccrg-sallantin-initial-spreading

2194 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

[255] J. Touch, TCP Control Block Interdependence, RFC 2140 (Informa-
tional), Internet Engineering Task Force, Apr. 1997.

[256] H. Balakrishnan and S. Seshan, The Congestion Manager, RFC
3124 (Proposed Standard), Internet Engineering Task Force,
Jun. 2001.

[257] RTP Media Congestion Avoidance Techniques (RMCAT), 2014.
[Online]. Available: http://datatracker.ietf.org/wg/rmcat/

[258] V. N. Padmanabhan and R. H. Katz, “TCP Fast Start: A technique for
speeding up web transfers,” in Proc. IEEE Globe Internet Conf., 1998,
pp. 1–20.

[259] I. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach: A new flow
control scheme for satellite networks,” IEEE/ACM Trans. Netw., vol. 9,
no. 3, pp. 307–321, Jun. 2001.

[260] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker, “Recursively cautious
congestion control,” in Proc. 11th USENIX Symp. NSDI, Apr. 2014,
pp. 373–385. [Online]. Available: https://www.usenix.org/conference/
nsdi14/technicalsessions/presentation/mittal

[261] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, Quick-Start for TCP
and IP, RFC 4782 (Experimental), Internet Engineering Task Force,
Jan. 2007.

[262] G. Fairhurst and A. Sathiaseelan, Quick-Start for the Datagram Con-
gestion Control Protocol (DCCP), RFC 5634 (Experimental), Internet
Engineering Task Force, Aug. 2009.

[263] P. Sarolahti, M. Allman, and S. Floyd, “Determining an appropriate
sending rate over an underutilized network path,” Comput. Netw., vol. 51,
no. 7, pp. 1815–1832, May 2007.

[264] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth–delay product networks,” in Proc. ACM SIGCOMM,
Pittsburgh, PA, USA, 2002, pp. 89–102.

[265] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKe-
own, “Processor sharing flows in the Internet,” in Proc. IWQoS,
Lecture Notes in Computer Science, Passau, Germany, Jun. 2005,
pp. 271–285.

[266] L. Eggert and G. Fairhurst, Unicast UDP Usage Guidelines for Applica-
tion Designers, RFC 5405 (Best Current Practice), Internet Engineering
Task Force, Nov. 2008.

[267] A. Vainshtein and Y. Stein, Structure-Agnostic Time Division Multi-
plexing (TDM) Over Packet (SAToP), RFC 4553 (Proposed Standard),
Internet Engineering Task Force, Jun. 2006.

[268] I. Järvinen et al., “Effect of competing TCP traffic on interactive real-
time communication,” in Proc. Int. Conf. PAM, 2013, pp. 94–103.

[269] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A mechanism
for background transfers,” ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pp. 329–343, Dec. 2002.

[270] A. Kuzmanovic and E. Knightly, “TCP-LP: A distributed algorithm for
low priority data transfer,” in Proc. IEEE INFOCOM, 2003, vol. 3,
pp. 1691–1701.

[271] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The quest for
LEDBAT fairness,” in Proc. IEEE GLOBECOM, Miami, FL, USA,
Dec. 2010, pp. 1–6.

[272] J. Schneider, J. Wagner, R. Winter, and H.-J. Kolbe, “Out of my
way—Evaluating low extra delay background transport in an ADSL
access network,” in Proc. ITC, Sep. 2010, pp. 1–8.

[273] D. Ros and M. Welzl, “Assessing LEDBAT’s delay impact,” IEEE
Commun. Lett., vol. 17, no. 5, pp. 1044–1047, May 2013.

[274] R. Jesup, “Issues with LEDBAT in wide deployment,” in Proc. IETF,
Vancouver, BC, Canada, Jul. 2012, pp. 1–11. [Online]. Available: http://
www.ietf.org/proceedings/84/slides/slides-84-tsvarea-2.pdf

[275] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Täht, “Fighting the
bufferbloat: On the coexistence of AQM and low priority congestion
control,” in Proc. IEEE INFOCOM, 2013, pp. 3291–3296.

[276] M. Handley, J. Padhye, and S. Floyd, TCP Congestion Window Val-
idation, RFC 2861 (Experimental), Internet Engineering Task Force,
Jun. 2000.

[277] A. Sathiaseelan, R. Secchi, and G. Fairhurst, “Enhancing TCP to support
rate-limited traffic,” in Proc. ACM SIGCOMM Workshop CSWS, Nice,
France, 2012, pp. 39–44.

[278] G. Fairhurst and A. Sathiaseelan, Updating TCP to Support Rate-
Limited Traffic, Internet Draft draft-ietf-tcpm-newcwv, Mar. 2013, Work
in progress.

[279] G. Fairhurst, A. Sathiaseelan, and R. Secchi, Updating TCP to Sup-
port Rate-Limited Traffic, Internet Draft draft-fairhurst-tcpm-newcwv,
Sep. 2012, Work in progress. [Online]. Available: http://tools.ietf.org/
html/draft-fairhurst-tcpm-newcwv

[280] S. Floyd, Limited Slow-Start for TCP With Large Congestion Win-
dows, RFC 3742 (Experimental), Internet Engineering Task Force,
Mar. 2004.

[281] N. Hu and P. Steenkiste, “Improving TCP startup performance using
active measurements: Algorithm and evaluation,” in Proc. 11th IEEE
ICNP, Nov. 2003, pp. 107–118.

[282] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “CapStart:
An adaptive TCP slow start for high speed networks,” in Proc.
Iaria Int. Conf. Evolving Internet, Los Alamitos, CA, USA, 2009,
pp. 15–20.

[283] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, and M. Gerla, “TCP
start up performance in large bandwidth delay networks,” in Proc. IEEE
INFOCOM, Hong Kong, Mar. 2004.

[284] S. Giordano, G. Procissi, F. Russo, and R. Secchi, “On the use of pipesize
estimators to improve TCP transient behavior,” in Proc. IEEE ICC, 2005,
pp. 16–20.

[285] The Bufferbloat Projects, Oct. 2013. [Online]. Available: http://www.
bufferbloat.net/

[286] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,”
ACM SIGCOMM CCR, vol. 28, no. 4, pp. 315–323, Oct. 1998.

[287] J. Corbet, TCP Small Queues, Linux Weekly News, Jul. 2012. [Online].
Available: https://lwn.net/Articles/507065/

[288] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole, “Supporting time-
sensitive applications on a commodity OS,” ACM SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 165–180, Dec. 2002.

[289] B. P. Swenson and G. F. Riley, “A new approach to zero-copy message
passing with reversible memory allocation in multi-core architectures,”
in Proc. IEEE/ACM/SCS 26th Workshop PADS, 2012, pp. 44–52.

[290] T. Suzumura, M. Tatsubori, S. Trent, A. Tozawa, and T. Onodera,
“Highly scalable web applications with zerocopy data transfer,” in Proc.
ACM Int. Conf. World Wide Web, Madrid, Spain, 2009, pp. 921–930.

[291] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
control without reliability,” ACM SIGCOMM CCR, vol. 36, no. 4,
pp. 27–38, Aug. 2006.

[292] M. Welzl, S. Jorer, and S. Gjessing, “Towards a protocol-independent
Internet transport API,” in Proc. IEEE ICC, 2011, pp. 1–6.

[293] L. Eggert and W. M. Eddy, “Towards more expressive transport-layer
interfaces,” in Proc. ACM Workshop MobiArch, San Francisco, CA,
USA, 2006, pp. 71–74.

[294] A. Petlund, “Transport Services and Low Latency,” Internet Draft
draft-petlund-latency-transport-services, Feb. 2014, Work in progress.
[Online]. Available: http://tools.ietf.org/html/draft-petlund-latency-
transport-services

[295] G. De Micheli, R. Ernst, and W. Wolf, Eds., Readings in
Hardware/Software Co-Design. Norwell, MA, USA: Kluwer,
2002.

[296] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architec-
ture: A Hardware/Software Approach, 1st ed. San Francisco, CA, USA:
Morgan Kaufmann, 1997.

[297] D. A. Patterson and J. L. Hennessy, “Computer Organization and De-
sign, The Hardware/Software Interface (The Morgan Kaufmann Series in
Computer Architecture and Design),” San Francisco, CA, USA: Morgan
Kaufmann, 2008.

[298] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues
and formalizations,” ACM Lett. Program. Languages Syst., vol. 1, no. 1,
pp. 74–88, Mar. 1992.

[299] S. Carr, J. Mayo, and C.-K. Shene, “Race conditions: A case study,” J.
Comput. Sci. Colleges, vol. 17, no. 1, pp. 90–105, Oct. 2001.

[300] U. Cummings and M. Zeile, “FocalPoint II, a low-latency, high
bandwidth switch/router chip,” in Proc. Symp. Hot Chips, Stanford, CA,
USA, Aug. 2007, pp. 1–21. [Online]. Available: http://www.hotchips.
org/wpcontent/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.
03.pdf

[301] A. I. C. Grecu et al., “Towards open network-on-chip bench-
marks,” in Proc. IEEE/ACM Int. Symp. NOCS, Princeton, NJ, USA,
May 2007, p. 205. [Online]. Available: http://web.it.kth.se/~axel/papers/
2007/NOCS-Benchmarks.pdf

[302] G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan, “On-
chip networks from a networking perspective: Congestion and scalability
in many-core interconnects,” ACM SIGCOMM CCR, vol. 42, no. 4,
pp. 407–418, Aug. 2012.

[303] J. Owens et al., “Research challenges for onchip interconnection net-
works,” IEEE Micro, vol. 27, no. 5, pp. 96–108, Sep./Oct. 2007.

[304] M. Ali, M. Welzl, and M. Zwicknagl, “Networks on chips: Scalable in-
terconnects for future systems on chips,” in Proc. 4th Eur. Conf. Circuits
Syst. Commun., Jul. 2008, pp. 240–245.

[305] S. Rumble, D. Ongaro, S. Stutsman, M. Rosenblum, and J. Ousterhout,
“It’s time for low latency,” in Proc. 13th USENIX Workshop HotOS,
Napa Valley, CA, USA, May 2011, p. 11. [Online]. Available: https://
www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://datatracker.ietf.org/wg/rmcat/
https://www.usenix.org/conference/nsdi14/technicalsessions/presentation/mittal
https://www.usenix.org/conference/nsdi14/technicalsessions/presentation/mittal
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-2.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-2.pdf
http://tools.ietf.org/html/draft-fairhurst-tcpm-newcwv
http://tools.ietf.org/html/draft-fairhurst-tcpm-newcwv
http://www.bufferbloat.net/
http://www.bufferbloat.net/
https://lwn.net/Articles/507065/
http://tools.ietf.org/html/draft-petlund-latency-transport-services
http://www.hotchips.org/wpcontent/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://www.hotchips.org/wpcontent/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://www.hotchips.org/wpcontent/uploads/hc_archives/hc19/3_Tues/HC19.07/HC19.07.03.pdf
http://web.it.kth.se/~axel/papers/2007/NOCS-Benchmarks.pdf
http://web.it.kth.se/~axel/papers/2007/NOCS-Benchmarks.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
http://tools.ietf.org/html/draft-petlund-latency-transport-services

BRISCOE et al.: REDUCING INTERNET LATENCY 2195

[306] “SPDY: An Experimental Protocol for a Faster Web,” White paper.
[Online]. Available: http://dev.chromium.org/spdy/spdy-whitepaper

[307] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY really make the web
faster?” in Proc. IFIP Netw., Jun. 2014, pp. 1–9.

[308] J. Roskind, QUIC: Quick UDP Internet Connections, (Living
Document), Dec. 2013. [Online]. Available: https://docs.google.
com/document/d/1RNHkx_VvKWyWg6Lr8SZ-
saqsQx7rFVev2jRFUoVD34/edit

[309] A. Langley and W. T. Chang, QUIC Crypto, Mar. 2014. [Online].
Available: https://docs.google.com/document/d/1g5nIXAIkN_
Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

[310] Google, The Chromium Project, Mountain View, CA, USA. [Online].
Available: http://www.chromium.org/Home

[311] Connectify, Taking Google’s QUIC for a Test Drive, Philadelphia,
PA, USA. Nov. 2013. [Online]. Available: http://www.connectify.me/
taking-google-quic-for-a-test-drive/

[312] Riverbed, Riverbed Optimization System (RiOS) 6.1; A Technical
Overview, San Francisco, CA, USA. 2010. [Online]. Available:
http://www.riverbed.com/about/document-repository/riverbed-
optimization-system-rios-version-61.html

[313] T. Grenot, F. Bonnet, B. Imbert, and J. Provost, “Method and device for re-
motely controlling the congestion of meshed flow in a packet mode teleco-
mmunication network,” U.S. Patent 20 080304 414 A1, Dec. 11, 2008.

[314] T. Grenot, “Method for optimising the sharing of a plurality of net-
work resources between a plurality of application flows,” U.S. Patent
2 673 325 A1, Jun. 26, 2010.

[315] M. Delattre and B. Imbert, “Method for management of data stream
exchanges in an autonomic telecommunications network,” U.S. Patent
2 012 0023 213 A1, Jan. 26, 2012.

[316] G. Henke, Acceleration; Bottlenecks, Pitfalls and Tips, White Pa-
per. [Online]. Available: http://cdn.crn.de/fileadmin/whitepapers/files/
ipanema_acceleration_bottleneck_pitfalls_tips.pdf

[317] Ipanema, Guarantee Applications Performance With Dynamic Hybrid
Networking, White Paper, 2013. [Online]. Available: http://response.
ipanematech.com/WP_Dynamic_Hybrid_Networking_EN?i=165

[318] C. D. Sutton, “Using QoS tunnels for TCP latency optimization,” U.S.
Patent 20 080 069 111 A1, Mar. 28, 2008.

[319] Infinita, Overcoming the Limits of TCP on High-Speed WANs, White
Paper, 2011. [Online]. Available: http://www.dabcc.com/downloadfile.
aspx?id=1162

[320] J. Pinkerton, SMB2—Big Improvements in the Remote Filesystem
Protocol, SNIA, Online Educational Resource, San Jose, CA, USA,
2008. [Online]. Available: http://www.snia.org/sites/default/education/
tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_
Improvements_Remote_FS_Protocolv3.pdf

[321] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degra-
dations, RFC 3135 (Informational), Internet Engineering Task Force,
Jun. 2001.

[322] J. Touch, “Two Ways to Trade Bandwidth for Latency,” in Proc.
ISOC Workshop Reducing Internet Latency, Sep. 2013, pp. 1–2.
[Online]. Available: http://www.internetsociety.org/sites/default/files/
pdf/accepted/11_touch-isoc-latency-2013.pdf

[323] M. Chetty, S. Sundaresan, S. Muckaden, N. Feamster, and E. Calandro,
“Measuring broadband performance in South Africa,” in Proc. 4th ACM
Annu. Symp. DEV , 2013, pp. 1–10. [Online]. Available: http://sites.noise.
gatech.edu/~srikanth/docs/broadband-sa-dev4.pdf

[324] DNSPrefetching(orPre-Resolving), Jan.2014. [Online]. Available: http://
blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html

[325] T. Everts, 11 Questions (and answers) about content delivery net-
works and web performance, Jan. 2014. [Online]. Available: http://
www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-
networks-cdn-web-performance/

[326] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft draft-rhee-tcpm-cubic, Aug. 2008. [Online]. Available:
http://tools.ietf.org/html/draft-rhee-tcpm-cubic

[327] J. Vardakas, I. Papapanagiotou, M. Logothetis, and S. Kotsopoulos, “On
the end-to-end delay analysis of the IEEE 802.11 distributed coordina-
tion function,” in Proc. 2nd ICIMP, Jul. 2007, p. 16.

[328] T. Selvam and S. Srikanth, “A frame aggregation scheduler for IEEE
802.11n,” in Proc. NCC, Jan. 2010, pp. 1–5.

[329] B. Ginzburg and A. Kesselman, “Performance analysis of A-MPDU and
A-MSDU aggregation in IEEE 802.11n,” in Proc. of the IEEE Sarnoff
Symposium, Apr. 2007, pp. 1–5.

[330] G. Bhanage, R. Mahindra, I. Seskar, and D. Raychaudhuri, “Implication
of MAC frame aggregation on empirical wireless experimentation,” in
Proc. IEEE GLOBECOM, Nov. 2009, pp. 1–7.

[331] S. Gubner and C. Lindemann, “Evaluating the impact of frame aggrega-
tion on video-streaming over IEEE 802.11n multihop networks,” in Proc.
of the IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Jun. 2012, pp. 1–6.

[332] S. Sundaresan et al., “Broadband Internet performance: A view from
the gateway,” in Proc. ACM SIGCOMM, Toronto, ON, Canada, 2011,
pp. 134–145. [Online]. Available: http://doi.acm.org/10.1145/2018436.
2018452

[333] D. Newman, “Latency and jitter: Cut-through design pays off for
arista, blade,” IDG Network World, Framingham, MA, USA, Jan.
2010. [Online]. Available: http://www.networkworld.com/reviews/2010/
011810-ethernet-switch-test-latency.html

[334] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm
for increasing the robustness of red’s active queue management,” ICIR,
Technical report, Frankfurt, Germany, Aug. 2001. [Online]. Available:
http://www.icir.org/floyd/red.html

[335] B. Briscoe, “Review: Quick-Start for TCP and IP,” BT, Ipswich, U.K.,
Tech. Rep. TR-CXR9-2005-007, Nov. 2005. [Online]. Available: http://
www.bobbriscoe.net/projects/2020comms/refb/jain05_rvw_rjb.pdf

[336] I. Biswas, A. Sathiaseelan, R. Secchi, and G. Fairhurst, “Analysing TCP
for bursty traffic,” Indersci. IJAMC, vol. 7, no. 3, pp. 585–592, Jun. 2010.

[337] A. Angelogiannopoulos, “Implementation and performance evalua-
tion of TCP extensions in FreeBSD,” M.S thesis, Technische Uni-
versität München Lehrstuhl für Kommunikationsnetze, Munchen,
Germany, Oct., 2013. [Online]. Available: https://eggert.org/students/
angelogiannopoulos-thesis.pdf

[338] E. Jeong et al., “mTCP: A highly scalable user-level TCP stack for
multicore systems,” in Proc. 11th USENIX Symp. NSDI, Apr. 2014,
pp. 489–502. [Online]. Available: https://www.usenix.org/conference/
nsdi14/technicalsessions/presentation/jeong

[339] B. Briscoe et al., “A survey of latency reducing techniques and their
merits,” in Proc. ISOC Workshop Reducing Internet Latency, Sep.
2013, pp. 1–2. [Online]. Available: http://www.Internetsociety.org/sites/
default/files/pdf/accepted/16_rite-latency_survey_pos.pdf

[340] J. P. G. Sterbenz and J. D. Touch, High-Speed Networking—A Systematic
Approach to High-Bandwidth Low-Latency Communication. Hoboken,
NJ, USA: Wiley, 2001.

Bob Briscoe attained a PhD in 2009 from University
College London, U.K. He is the Chief Researcher
in Network Infrastructure at BT, Ipswich, U.K., and
a member of BT’s Network Strategy team. His ex-
pertise is in engineering and economic and social
control of computer networks. In the late 1980s, he
managed the transition to IP of many of BT’s R&D
Labs. In 2000, he set up and led the Market Managed
Multi-service Internet (M3I) consortium and incu-
bated a start-up that BT absorbed into its Internet
QoS products. In 2007 he helped initiate the Trilogy

project, which successfully delivered re-definition of the Internet architecture
through IETF standardization. His recent work is on reducing latency and on
virtualizing network functions (NFV), particularly security aspects.

Anna Brunstrom received the B.Sc. degree in Com-
puter Science and Mathematics from Pepperdine
University, Malibu, CA, USA, in 1991 and the M.Sc.
and Ph.D. degrees in Computer Science from the
College of William and Mary, Williamsburg, VA,
USA, in 1993 and 1996, respectively. She joined
the Department of Computer Science, Karlstad Uni-
versity, Sweden, in 1996, where she is currently a
Full Professor and the Research Manager for the
Distributed Systems and Communications Research
Group. She has a background in distributed systems,

but her main area of work over the last years has been in computer networking
with a focus on transport protocol design, QoS/QoE issues, cross-layer inter-
actions, and wireless communication. She has authored/coauthored ten book
chapters and over 100 international journal and conference papers.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

http://dev.chromium.org/spdy/spdy-whitepaper
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFVev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFVev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFVev2jRFUoVD34/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
http://www.chromium.org/Home
http://www.connectify.me/taking-google-quic-for-a-test-drive/
http://www.connectify.me/taking-google-quic-for-a-test-drive/
http://www.riverbed.com/about/document-repository/riverbed-optimization-system-rios-version-61.html
http://www.riverbed.com/about/document-repository/riverbed-optimization-system-rios-version-61.html
http://cdn.crn.de/fileadmin/whitepapers/files/ipanema_acceleration_bottleneck_pitfalls_tips.pdf
http://cdn.crn.de/fileadmin/whitepapers/files/ipanema_acceleration_bottleneck_pitfalls_tips.pdf
http://response.ipanematech.com/WP_Dynamic_Hybrid_Networking_EN?i=165
http://response.ipanematech.com/WP_Dynamic_Hybrid_Networking_EN?i=165
http://www.dabcc.com/downloadfile.aspx?id=1162
http://www.dabcc.com/downloadfile.aspx?id=1162
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocolv3.pdf
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocolv3.pdf
http://www.snia.org/sites/default/education/tutorials/2008/fall/networking/JimPinkerton-SMB2_Big_Improvements_Remote_FS_Protocolv3.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/11_touch-isoc-latency-2013.pdf
http://www.internetsociety.org/sites/default/files/pdf/accepted/11_touch-isoc-latency-2013.pdf
http://sites.noise.gatech.edu/~srikanth/docs/broadband-sa-dev4.pdf
http://sites.noise.gatech.edu/~srikanth/docs/broadband-sa-dev4.pdf
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://blog.chromium.org/2008/09/dns-prefetching-or-pre-resolving.html
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://www.webperformancetoday.com/2013/06/12/11-faqs-content-delivery-networks-cdn-web-performance/
http://tools.ietf.org/html/draft-rhee-tcpm-cubic
http://doi.acm.org/10.1145/2018436.2018452
http://doi.acm.org/10.1145/2018436.2018452
http://www.networkworld.com/reviews/2010/011810-ethernet-switch-test-latency.html
http://www.networkworld.com/reviews/2010/011810-ethernet-switch-test-latency.html
http://www.icir.org/floyd/red.html
http://www.bobbriscoe.net/projects/2020comms/refb/jain05_rvw_rjb.pdf
http://www.bobbriscoe.net/projects/2020comms/refb/jain05_rvw_rjb.pdf
https://eggert.org/students/angelogiannopoulos-thesis.pdf
https://eggert.org/students/angelogiannopoulos-thesis.pdf
https://www.usenix.org/conference/nsdi14/technicalsessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technicalsessions/presentation/jeong
http://www.Internetsociety.org/sites/default/files/pdf/accepted/16_rite-latency_survey_pos.pdf
http://www.Internetsociety.org/sites/default/files/pdf/accepted/16_rite-latency_survey_pos.pdf
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

2196 IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016

Andreas Petlund received the Ph.D. degree from the
University of Oslo, Norway, in 2009. His Ph.D. the-
sis focused on low-latency transport for interactive
and time-dependant applications. He is currently a
Research Scientist at Simula Research Laboratory,
Fornebu, Norway. He is currently coordinating the
“Reducing Internet Transport Latency” (RITE) FP7
EU project and leading a national project on low
latency for thin-stream applications. His work on
retransmission mechanisms to reduce latency has
resulted in a suite of mechanisms, several of which

are available in the Linux kernel. The main topic of his current work is
systems and network optimizations for time-dependant applications, but he
also has experience in kernel-level optimizations, embedded systems, and
heterogeneous processor systems.

David Hayes received the BE(Elect) degree from
Queensland University of Technology, Australia, in
1987 and his PhD from the University of Melbourne,
Australia, in 2002. Initially, he worked with Telstra
(Australia) and then with Ngee Ann Polytechnic
(Singapore). Since then, he has had a number of po-
sitions, including those with the University of Mel-
bourne, Queensland University of Technology, Swin-
burne University of Technology (Australia), and his
current position at the University of Oslo, Norway,
working on the “Reducing Internet Transport La-

tency” (RITE) FP7 EU project. He has authored delay-based TCP congestion
controls and SCTP NAT in FreeBSD. He has interests in various aspects of
network performance research, analysis, and protocol implementation.

David Ros received his B.Sc. (with honors) and
M.Sc. degrees in Electronics Engineering from
Simón Bolívar University, Caracas, Venezuela, and
his Ph.D. in Computer Science from the Institut
National de Sciences Appliquées, Rennes, France.
After a long tenure as an Associate Professor in
Télécom Bretagne’s Networks, Security and Multi-
media Department, he moved to Simula Research
Laboratory, Fornebu, Norway, where he is currently
working as Coordinator of EU Research for the
Section in Communication Systems. He is currently

co-chairing the Internet Congestion Control Research Group at the IRTF. His
active research interests include transport-layer issues, congestion control, as
well as quality of service and architectural issues in IP networks.

Ing-Jyh Tsang received the B.Sc. degree in Elec-
tronic Engineering from the Federal University of
Pernambuco, Recife, Brazil, and the Ph.D. degree in
Physics from the University of Antwerp, Antwerp,
Belgium. He joined Alcatel-Lucent, Antwerpen, in
2000, starting at the former Research and Inno-
vation Department working on BPON/GPON and
IPTV services. He worked in several departments,
as System Engineer at Wireline Division, Solution
Architect within the Service Routing Department,
and Consultant Network Architect within a major

operator. He is a Senior Research Engineer at Bell Labs—Network Algorithms,
Protocols and Security (NAPS) group, and having participated in several EU
funded projects such as GIANT and ECODE, at present, he is working on the
“Reducing Internet Transport Latency” (RITE) FP7 EU project.

Stein Gjessing received the Cand. Real. and Dr.
Philos. degrees from the University of Oslo, Oslo,
Norway, in 1975 and 1985, respectively. He is a
Professor of computer science with the Department
of Informatics, University of Oslo. He acted as Head
of the Department of Informatics for four years from
1987. From February 1996 to October 2001, he was
the Chairman of the national research program “Dis-
tributed IT-System,” founded by the Research Coun-
cil of Norway. His original work was in the field of
programming languages and programming language

semantics, in particular related to object oriented concurrent programming. He
has worked with computer interconnects and computer architecture for cache
coherent shared memory, with DRAM organization, with ring based LANs
(IEEE Standard 802.17) and with IP fast reroute. His current research interests
are transport, routing, and network resilience both in Internet-like networks and
in sensor networks.

Gorry Fairhurst received the B.Sc. degree in Ap-
plied Physics and Electronics from Durham Uni-
versity, Durham, U.K., and the Ph.D. degree in
Communications Engineering from the University of
Aberdeen, Aberdeen, U.K. He is currently a Pro-
fessor with the School of Engineering, University
of Aberdeen. His research interests include link
communications protocols, TCP transport, develop-
ment of multicast transport protocols, networking
techniques for low latency Internet communication,
and performance evaluation of broadband satellite

systems. He has worked on a range of IP-based satellite projects funded by
national, European, and ESA funding, and contributed to DVB on networking
standards for IP transmission over DVB and the HLS for DVB-RCS2. He
actively participates in developing networking standards with the Internet
Engineering Task Force, where he chairs the Transport and Services Working
Group (TSVWG) and is a member of the IETF Transport Directorate.

Carsten Griwodz received the Diploma in Com-
puter Science from the University of Paderborn,
Paderborn, Germany, in 1993 and the Ph.D. degree
from Darmstadt University of Technology, Germany,
in 2000. From 1993 to 1997, he was with the IBM
European Networking Center, Heidelberg, Germany.
In 1997, he joined the Multimedia Communications
Laboratory, Darmstadt University of Technology. He
joined the University of Oslo, Norway, in 2000 and
the research company Simula Research Laboratory,
Fornebu, Norway, in 2005. He has been a Full Pro-

fessor at the University of Oslo since 2006 and has led the Media Department,
Simula Research Laboratory, since 2009. His research interest is the perfor-
mance of multimedia systems. He is concerned with streaming media, which
includes all kinds of media that are transported over the Internet with temporal
demands, including stored and live video as well as games and immersive
systems.

Michael Welzl received Ph.D. (with distinction) and
Habilitation degrees from Darmstadt University of
Technology, Germany, in 2002 and 2007 respec-
tively. He spent two years as a Research Assistant
at the Telecooperation Department, University of
Linz/Austria, before joining the faculty of the newly
founded Institute of Computer Science, University
of Innsbruck/Austria, in November 2001, where he
led a research team on Network Support for Grid
Computing. In May 2009, he joined the Department
of Informatics, University of Oslo, Oslo, Norway, as

an Associate Professor. He was appointed to a Full Professorship in September
2009. Since October 2011, he has also been an Adjunct Professor at Swinburne
University of Technology, Melbourne, Australia.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on October 05,2023 at 19:52:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

