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Practical Routing in Delay-Tolerant Networks

Evan P.C. Jones, Lily Li, Jakub K. Schmidtke, and Paul A.S. Ward, Member, IEEE

Abstract—Delay-tolerant networks (DTNs) have the potential to interconnect devices in regions that current networking technology
cannot reach. To realize the DTN vision, routes must be found over multiple unreliable, intermittently-connected hops. In this paper we
present a practical routing protocol that uses only observed information about the network. We designed a metric that estimates the
average waiting time for each potential next hop. This learned topology information is distributed using a link-state routing protocol,
where the link-state packets are “flooded” using epidemic routing. The routing is recomputed each time connections are established,
allowing messages to take advantage of unpredictable contacts. A message is forwarded if the topology suggests that the connected
node is “closer” to the destination than the current node. We demonstrate through simulation that our protocol provides performance
similar to that of schemes that have global knowledge of the network topology, yet without requiring that knowledge. Further, it requires
significantly less resources than the alternative, epidemic routing, suggesting that our approach scales better with the number of
messages in the network. This performance is achieved with minimal protocol overhead for networks of approximately 100 nodes.

Index Terms—Routing protocols, mobile communication systems, nomadic computing.

1 INTRODUCTION

DELAY-TOLERANT networks (DTNs) have the potential to
connect devices and areas of the world that are under-
served by traditional networks. DTNs enable communica-
tion by taking advantage of temporary connections to relay
data in a fashion similar to the postal network [1], instead
of requiring an end-to-end network path to be available.
These networks are being investigated for education [2],
telecommunications [3], government services [4], environ-
mental monitoring [5], vehicular communication [6], and
deep space [7].

One obstacle that currently limits deployment of these
networks is that it is difficult to determine how to get data
from the source to the destination. Simple DTN-like
networks have been built using static routing [2], [3], which
is an effective approach for small networks. However, the
benefit will increase if the networks can be scaled to service
larger areas. To achieve this goal, routing protocols are
needed to automate the configuration and to cope with
changes and failures.

This paper presents a routing protocol designed to be
easy to deploy. This is an extended version of the original
workshop paper where this protocol was first presented [8].
In order to make the protocol easy to deploy, it must meet
three design goals. First, the routing must be self-configur-
ing. This reduces the cost to deploy and maintain a
network, as fewer people will be required. Additionally, it
is critical for equipment that may be deployed far from
network experts and to maintain connectivity even when

e E.P.C. Jones, L. Li, and P.A.S. Ward are with the Department of Electrical
and Computer Engineering, University of Waterloo, Waterloo, Ontario,
N2L 3G1, Canada. E-mail: {ejones, I71i, pasward)@uwaterloo.ca.

e |K. Schmidtke is with the Faculty of Electronics and Information
Technology, Warsaw University of Technology, Warsaw, Poland.

E-mail: jschmidt@elka.pw.edu.pl.

Manuscript received 20 Apr. 2006, revised 28 Sept. 2006; accepted 23 Oct.
2006; published online 7 Feb. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0112-0406.
Digital Object Identifier no. 10.1109/TMC.2007.1016.

1536-1233/07/$25.00 © 2007 IEEE

some components fail. Many application domains where
DTNs can provide significant benefits have both of those
problems. Second, the protocol must provide sufficient
performance over a wide variety of connectivity patterns for
most DTN scenarios. A self-configuring routing protocol
that has very poor delivery ratios or extremely large latency
may well be of limited value. Finally, the protocol must
make efficient use of buffer and network resources. If the
DTN becomes a valuable resource, it will be used frequently
by a large number of users. Thus, it must be capable of
scaling with demand.

Before discussing the details of our protocol, we first
describe our model of DTNSs, a simplified version of the
model presented by Jain et al. [9]. A DTN is composed of
computing systems, called nodes, that participate in the
network. Bidirectional links with constant bandwidth and
latency connect some nodes together. These links may go
up and down over time due to mobility, failures, or other
events. When the link is up, the nodes have an opportunity
to send data to each other. This opportunity is called a
contact [1]. Only a single contact may exist between two
nodes at one time. The contact schedule is the set of times
when the contact will be available. In graph theory, this
model is a time-varying graph.

This model differs from the more general model
presented by Jain et al. in three major ways. First, we
assume that the contacts are always bidirectional. Our
protocol requires a two-way exchange of data between
nodes and, thus, it will not operate in networks with
unidirectional links. The second is that contacts have
constant bandwidth and latency. Our protocol does not
adapt based on bandwidth and latency, as this would only
complicate our evaluation. Finally, we only permit a single
contact to exist between two nodes, which means that our
protocol cannot take advantage of multiple network
interfaces. This is not a fundamental limitation. Our
protocol can handle this by treating the combination of all
the contacts between a pair of nodes as a single virtual
contact. We do not evaluate this here.
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The remainder of this paper is organized as follows:
First, we discuss the previous work on the delay-tolerant
routing problem, demonstrating its limitations. In Section 3,
we describe the design of our protocol and justify our
design decisions. We investigate the performance of specific
aspects of our protocol in Section 5 and then present the
performance for some realistic scenarios in Section 6.
Finally, we discuss our conclusions and future work.

2 RELATED WORK

Because the routing problem must be solved in order to use
a new network, there has been extensive research on
routing in delay-tolerant networks. The work dates back
to before the term “delay-tolerant” was widely used. The
adjectives “intermittently-connected,” “sparse,” and “dis-
connected” are also used to describe networks without
constant end-to-end connections. The previous work can be
divided into two broad categories: Flooding protocols and
forwarding protocols.

2.1 Flooding Protocols

Flooding protocols distribute many copies of the message
to a large number of nodes with the hope that one of
these intermediate nodes will reach the destination. These
protocols typically operate without any information about
the network. The representative flooding protocol is
epidemic routing [10]. It attempts to give all nodes a
copy of every message through random exchanges
between nodes. This approach can achieve high delivery
ratios. If it is provided infinite bandwidth and buffer
resources, it will deliver all the messages that can possibly
be delivered in the minimum amount of time. It requires
no knowledge about the network and, thus, it satisfies the
first two of our three design criteria. Unfortunately, it is
very expensive in terms of the number of transmissions
and buffer space. Thus, it does not satisfy our require-
ment for an efficient protocol, as it does not appear that
this approach can scale as the number of messages and
nodes in the network increases.

Many papers have studied ways to make epidemic
routing more efficient [11], [12], [13], [14], [15], [16]. Critical
resources for epidemic routing are the buffer and band-
width. An intelligent buffer management scheme can
improve the delivery ratio over the simple FIFO scheme
[11]. An effective buffer policy is to drop packets that are
the least likely to be delivered based on previous history. If
node A has met B frequently, and B has met C frequently,
then A is likely to deliver messages to C through B. Similar
metrics are used in a number of epidemic protocol variants
[11], [12], [13], [15], [16]. This approach takes advantage of
physical locality and the fact that movement is not
completely random. While these protocols are more
efficient than the original epidemic routing protocol, they
still transmit many copies of each message.

An extension is to use “death certificates” [17] to remove
delivered messages from the network. Small and Haas
show that, the more aggressively the death certificates are
propagated, the less storage is required at each node [14],
while Harras and Almeroth show that the more aggressive
strategies transmit more messages [18].

An alternative to epidemic routing is to spread copies of
a message to a limited number of nodes. A variety of
schemes are possible, such as limiting the message dis-
tribution to a tree [14], [19] or limiting the number of hops
the message can travel to some small number [10], [20], [21],
[22], [23]. All of these schemes reduce resource consump-
tion, but also reduce the delivery ratio. Additionally, in
realistic scenarios where nodes are not simply moving
randomly in a space, these limits might mean that it is
impossible for two nodes in the network to communicate,
simply because they are far apart.

2.2 Forwarding Protocols

An alternative approach to flooding is to forward a single
copy of each message along a carefully selected path.
There are many possible ways to select a path. One
approach is to use location-based routing, where nodes
pass the message on to the next hop that is closest to the
destination. The measure for “closeness” could be physical
distance. Lebrun et al. proposed using the motion vector of
mobile nodes to predict their future location. Their scheme
passes messages to nodes that are moving closer to the
destination [24]. Leguay et al. presented a strategy that
uses a virtual coordinate system [25], so the measure of
“closeness” represents the probability that the nodes will
come into contact with each other. These studies show that
location-based routing is feasible for delay-tolerant net-
working. However, there are two well-known problems
that these studies do not address. The first is that, even if
two nodes are “close,” there is no guarantee that they will
ever be able to communicate. Thus, messages can get
trapped in local minima and not be delivered. The second
problem is that the source needs to know the location of
the destination in order to send it a message. This is easy if
the location of nodes never changes, but it is likely that
will not be the case in a delay-tolerant network. These
problems are well-studied in the context of ad hoc wireless
networks [26], but no DTN-specific protocols have been
proposed that solve them.

Jain et al. showed that it is possible to apply traditional
shortest-path routing techniques to DTNs [9]. They use the
future contact schedule to compute a metric for each
contact, then use source routing to forward the message
over the shortest path. Their results show that the efficiency
and performance increases with the amount of information
used for the metric. Unfortunately, this scheme cannot be
self-configuring because it requires the complete contact
schedule. Handorean et al. explore alternatives for dis-
tributing connectivity information, but they still assume
that each node knows its own connectivity perfectly [27].

Jain et al. also introduced the “First Contact” routing
scheme, where the message is forwarded on a randomly
chosen contact or on the first available contact if none of
them are connected at the time of message arrival. This
simple technique requires no information about the net-
work and, thus, no configuration. However, it “performs
poorly in nontrivial topologies” [9] because it makes
random decisions. In particular, it never attempts to learn
the topology, having the same routing performance for all
time. By contrast, our approach, while it too starts with zero
knowledge, will learn the network behavior and, assuming
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that behavior is not random, improve its performance over
time. Thus, we do not consider this protocol further.

3 RouTING PROTOCOL DESIGN

Our protocol is a shortest-path routing protocol for delay-
tolerant networks. Its design is based on routing in
traditional networks, but some design decisions were
modified for this new environment. First, we discuss some
of the issues in selecting a path metric and present the
metric we use. Next, we investigate when to make routing
decisions. Finally, we describe how to distribute topology
information.

3.1 Path Metrics for DTNs

Paths must be carefully selected to extract the best
performance from a network. In a DTN, the primary
requirement is that messages are reliably delivered. Thus,
the delivery ratio is a very important metric. Unfortunately,
it is not clear how a metric can be constructed to directly
maximize the delivery ratio along a path. To resolve this
problem, we follow the same approach as Jain et al. and
choose to minimize the end-to-end delay [9]. This reduces
the amount of time a message occupies buffers in the
network, which intuitively should reduce the number of
messages dropped, assuming that buffer overflow is the
primary cause of loss. Additionally, previous work in the
distributed systems community has shown that it is not
possible to implement many important algorithms, such as
consensus, election, or membership, using networks that
provide an asynchronous, time-free model [28]. However, it
is possible to implement them using an asynchronous timed
mode [29]. Thus, it seems useful to strive for timely delivery
of messages.

In a delay-tolerant network, the end-to-end delay has
four components. First, the message must wait for the next
contact to arrive (waiting time). Next, the data queued
ahead of the current message must be delivered (queuing
delay). The message must then be transmitted (transmission
delay) and, finally, the signal must propagate to the next
hop (latency). Delay is an attractive metric because these
four factors can be combined into a single number,
assuming that sufficient information is available. However,
to simplify the discussion in this paper, we assume that
links have a very high throughput and low latency, which
means that the waiting time is the only significant factor.

A variety of metrics for minimizing the end-to-end delay
in a DTN have been explored by Jain et al. [9]. However,
most of them require knowledge of future contact arrival
times. An exception is the Minimum Expected Delay
(MED). This metric assigns a cost to each edge equal to
the average waiting time plus the transmission delay. Once
this value is computed, the contact schedule is not needed.
Assuming that message arrival times are uniformly dis-
tributed, the waiting time probability distribution is a
piecewise linear function. It is a straightforward application
of basic probability to compute the expected value. The
derivation of the metric is included in the Appendix.

We propose a variant of MED we call the Minimum
Estimated Expected Delay (MEED). Instead of computing
the expected waiting time using the known contact
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schedule, MEED uses the observed contact history. This
assumes that the future connectivity will be similar to the
previously observed connectivity. The details of this metric
are reviewed in Section 3.6.

3.2 Routing Decision Time

The earliest opportunity that the path for a message can
be decided is when it is generated at the source, which is
called source routing. This is a simple approach but it is
inappropriate for our protocol because, as the message
travels closer to the destination, the nodes will likely
have more recent and accurate information about the
destination’s connectivity. Hence, it seems natural that
these intermediate nodes can make better decisions than
the source.

The next time to make forwarding decisions is when a
message arrives at an intermediate node, which is called
per-hop routing. When the message arrives, the node
determines the next hop for the destination and places it
in a queue for that contact. This is also not a good solution
for DTN, as changes to the topology could occur after the
message arrives. This would result in the message waiting
to be forwarded over a suboptimal link.

In order to make routing decisions with the best possible
information, we use what we call per-contact routing.
Instead of computing the next hop for a message in
advance, the routing table is recomputed each time a
contact arrives. After a new routing table has been
computed, we examine each message in the buffer to
determine if any of them need to be forwarded over any of
the available contacts. This assures that each routing
decision is made with the most recent information. The
disadvantage is that the routing table may be recomputed
more often if the contacts go up and down frequently.
Additionally, the routing must be recomputed before any
messages may be forwarded. Thus, there may be some
additional delay before a link will be used. As long as the
processing power of the nodes is appropriate for the size of
the network, this delay will not be significant. However, it
may be a limiting factor in scaling this approach to very
large networks.

Since we are recomputing the routing table each time a
contact becomes available, we can improve the performance
further by temporarily assigning the contact a cost of zero in
our local routing table. This value is used when computing
the routing table, but is not propagated to other nodes. This
“short circuits” the routing decisions made by the link-state
protocol, allowing messages to take advantage of good
timing. This is similar to the approach used in some
epidemic routing variants [11], [15], and to what Handorean
et al. call a “path update” [27]. Per-contact routing
combined with short circuiting is effective for delay-tolerant
networks because it guarantees that decisions are always
made with the most recent information possible, and it can
take advantage of serendipitous contact arrivals to make the
routing more efficient.

For example, imagine we have a network with four
nodes. Node A has a message for node D. There are two
possible next hops: B with a total path cost of 5, and C with
a total path cost of 10. This topology is shown in Fig. 1a.
Thus, the current routing state says the message should

Authorized licensed use limited to: Bibliothéque ETS. Downloaded on November 27,2020 at 19:15:25 UTC from IEEE Xplore. Restrictions apply.



946 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.6, NO.8, AUGUST 2007

@ (b)
Fig. 1. Per-contact routing example.

wait for B to reach D. However, node C connects first. Thus,
the cost to go from A to C becomes zero, as shown in
Fig. 1b. With per-hop or source routing, the message would
remain queued at A waiting for the path with cost 5
through node B. However, per-contact routing takes
advantage of this unforeseen contact and delivers the
message to C, where it will wait for a path with cost 2.

3.3 Impact of Deferring Routing Decisions

Making routing decisions as late as possible seems like a
clear win for delay-tolerant networks because it allows the
path taken by a message to change while it is in transit.
Consider the situation where the next hop for a message
does not become available due to a failure. At some point,
source or per-hop routing would give up and drop the
message because the next hop has disappeared. However,
per-contact routing automatically uses an alternate contact
as soon as the routing metric decides that is the best path.

Unfortunately, this design decision has one drawback.
Link-state routing is loop free only if the same topology is
used to make all the routing decisions along the path of
a message. Source routing guarantees that this occurs
because all the routing decisions are made at the source. In
connected networks, per-hop routing assumes that the
topology does not change while the message is in transit.
This is reasonable since the end-to-end delay is measured in
milliseconds and topology changes are relatively rare, but
this assumption does not hold for DTNSs. If the link weights
change while the data is in transit, it is possible for a packet
to get passed between two nodes indefinitely. For a loop to
occur, the link weights must change enough so that, when
the packet gets to one of the nodes, the routing directs the
packet back the way it came.

A situation where this loop could occur in a DTN is
shown in Fig. 2. Initially, node B has a message for node A,
and the shortest path is BCA. When node C connects to B,
the message is forwarded to C. Now, imagine that the cost of
the contact BA decreases because A connects to B. Mean-
while, the cost of the CA contact increases to 6 because C has
not been connected to A for some time. At this point, the
situation is the mirror image of how it began. The message
would have been delivered if it had stayed at B. Now, if B
connects to C, the message will be sent back to B. If the
connectivity pattern is periodic, the message will bounce
between B and C indefinitely. Short circuit routing aggra-
vates this problem because the link cost between B and C no
longer matters, so the link costs need to fluctuate less.

Fig. 2. Routing loop caused by per-contact routing.

This problem could be mitigated by adding hysteresis. In
order to backtrack, the path must improve upon the next
best path by some threshold. The threshold could increase if
a node is revisited multiple times. This would require per-
message state and, thus, additional resources. We do not
implement a solution in our simulations because we did not
observe any loops. We did observe a number of situations
where messages backtrack, sometimes in less than ideal
ways, but they continued to make forward progress. A real
implementation may need to include a solution because,
while this situation seems unlikely to occur, it would cause
significant disruption if it did.

3.4 Topology Distribution

Once we have costs for individual links, the information
needs to be distributed throughout the network. Traditional
networks typically use link-state or distance vector algo-
rithms for this purpose, although other choices are possible.
We chose to implement a link-state routing algorithm for
two reasons. The primary reason is that there is a natural
match between flooding in link-state algorithms and
epidemic message distribution. Flooding distributes a copy
of each link-state table to all nodes. Epidemic replication
distributes a copy of each message to all nodes. Thus, we
can implement a link-state protocol in a DTN using an
epidemic algorithm, which is known to be very robust.

The secondary reason we chose to implement link-state
routing is that it provides the complete topology at each
node, which allows the topology to be updated in a single
contact. If a node has been disconnected for a long time, it
can obtain the entire topology in a single exchange with any
other node. A distance vector algorithm would only
distribute paths that pass through the other node, and
multiple exchanges would be required to obtain the entire
topology.

Link-state routing does have its disadvantages. First,
each node must store the entire topology in its routing
tables, which could be larger than the state required for
distance vector routing. Second, merging topology informa-
tion from multiple nodes becomes more complicated
because there is more information to be synchronized.

3.5 An Epidemic Link-State Protocol

Upon connection, nodes exchange summary vectors that list
the link-state tables the nodes have received. Each table is
tagged with a sequence number which permits the nodes to
determine which ones are the most recent. The nodes
exchange any missing updates so that they both have the
same topology state. Then, they recompute their routing
tables and finally can forward messages to the other node.
Since we use per-contact routing, the metric for each link is
temporarily set to zero to represent the fact that messages
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Fig. 3. The epidemic link-state protocol state machine.

can be immediately sent to the other node. A protocol state
machine, shown in Fig. 3, is maintained for each connection.

When the local link state table changes, an update must
be propagated to all nodes in the network. This is an
expensive operation. To reduce the overhead, a node may
suppress updates that it decides are unnecessary. However,
it is essential that it continues to make routing decisions
using the table that it last advertised; otherwise, the routing
tables could be inconsistent between connected nodes,
which might cause an immediate routing loop. Our simple
implementation propagates an update if at least one weight
changed by more than 5 percent or if a new contact has
been added.

To estimate the overhead of this protocol, the size of each
protocol message must be determined. There are two
protocol messages exchanged: summary vectors and topol-
ogy updates. The summary vector contains one (source id
and sequence number) pair for each node in the network. If
we assume each value has a fixed length, the size of this
message scales linearly with the size of the network. The
topology update contains a set of (source id, sequence
number, link partner id, and metric) tuples. In the worst
case, the complete topology must be transmitted. The
complete topology has one tuple for each node’s contacts.
If there are N nodes in the network and each node has
D contacts, then a total of ND tuples are required to specify
the full topology. If we assume that the average node degree
is bounded by a constant, this overhead also scales linearly
with the size of the network. As a somewhat realistic
example, if we encode these messages as arrays and assume
each value is a 32-bit integer, an 802.11 packet containing
1,500 bytes of data can store an update with information
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about 92 links, which would be sufficient for a network with
15 nodes with an average degree of 6. Thus, the overhead
amounts to a single 802.11 transmission for small networks.
A 100 node network, with average degree 10, will require
about 11 such overhead packets, which at the maximum
transmission rate for 802.11 amounts to about 5 ms, which,
in many scenarios, is negligible. Even a 300 node network
with average degree 50 will require less than a second of
transmission time at the 802.11 base rate. Overhead may be a
problem for very large networks.

3.5.1 Example

Consider three nodes, A, B, and C, that have begun the
routing algorithm, but have no knowledge about each
other. Initially, their link state tables are empty. If A and B
encounter each other first, they will begin the algorithm by
exchanging empty summary vectors, representing the fact
that they have no network knowledge. Examining these
vectors, they will see that they are each completely up to
date, as there is no network topology yet. Additionally, A
and B will record that they have seen each other in order
to begin learning the network topology. At this point, the
contact is up and they can exchange messages with each
other. After this contact goes down, A and B have a
nonzero link cost for the AB contact. If the BC' contact
becomes available next, B and C will exchange summary
vectors. B will see that C knows nothing about the AB
contact, so B will send C its current link estimate. After
this contact goes down, the AB and BC contacts will each
have nonzero values.

3.6 The MEED Metric

Our protocol relies on an estimate of the connectivity in
order to make intelligent routing decisions. To do this, we
use the expected-delay metric originally presented by Jain
et al. [9]. This metric computes the expected delay for a
message to go from one node to another using a given
contact, assuming that all message arrival times are equally
likely. The derivation of this metric is simple and is
included in the Appendix. The final computed metric value
is shown in (1), where n is the total number of disconnected
periods, d; is the duration of a given disconnected period,
and ¢ is the total time interval over which these disconnec-
tions were observed:

oy

of (1)

The original metric is computed using the contact
schedule for the entire period that the network is in use.
However, it is possible to compute this metric for any
arbitrary time period. If we assume that the future behavior
of a contact will be similar to the past, we can use the value
for the past as the current estimate. We present three
techniques for computing this metric: the infinite history
window, the sliding history window, and the exponentially-
weighted moving average.

3.6.1 Infinite History Window

The simplest approach is to compute the metric over the
entire history of a node. This is easy to do since the
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weighted moving average expected delay.

computation only requires a sum of squared disconnection
times, the current time, and the initial time where the
observations began. Unfortunately, this scheme is some-
what impractical. First, the sum of disconnection times
continues to increase without bound. This means that it
may be difficult to compute this value if a node is running
for a long time. Second, if the connectivity pattern for a
contact changes for some reason, the metric will average
both the old behavior and the new behavior. This means
that this approach will take a long time to adjust to changes.

There is also a small problem with this simple approach.
If the contact is currently down and we include the interval
between now and the last time the contact was available,
the metric value can actually decrease. Consider the case
where a contact has a periodic pattern and is up for 5 time
units, then down for 15. This pattern has an expected delay
of 15?/(2 x 20) = 5.625. In Fig. 4a, we plot this contact’s
state in the bottom part of the graph and the metric in the
top part of the graph. The raw metric line in Fig. 4a
increases when the contact is down and decreases when it
is up. However, immediately after the contact goes down, it
continues to decrease. This occurs because we do not know
when the contact will become available next, so including
the current disconnected interval makes a best-case
estimate, assuming that the contact will come up in the
next instant. To solve this, we take the maximum of this
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best-case estimate and the metric when the contact was
last available, as shown by the “max” line in Fig. 4a. This
way, the metric will only decrease when the contact is up
and never when the contact is down. For a periodic contact,
the infinite window computation equals the ideal value
just before the contact comes up. However, the metric
approaches the correct value as time approaches infinity.

3.6.2 Sliding History Window

In order to make the metric more responsive to changes, we
can compute it over a sliding window. This means that, if
the contact-connectivity behavior changes, the old behavior
will eventually be removed from the history window and
no longer included in the metric. Unfortunately, this also
works in reverse. If the history window does not capture a
large enough sample of the contact behavior, it may
fluctuate significantly and not accurately represent the
average behavior. In order to avoid some undesirable
behavior that happens when averaging over partial up or
down periods, we round our history window up to the last
connect or disconnect event. Because of this, the metric will
oscillate around the true average, even if the window is
exactly the same size as the period of the contact.

We again show a contact with an up period of five time
units and a down period of 15 time units in Fig. 4b. Even
when the sliding window size is a multiple of the period
(20), it oscillates around the exact metric. However,
windows that are much larger than the period, such as
the window of size 50 in the figure, oscillate less.

This version is more complex to compute than the
infinite history window approach. For this metric, we must
record all the connection and disconnection times within
the window. In theory, this means that the potential amount
of data that must be stored is infinite, as the contact could
go up and down an infinite number of times within a given
time window. Practical systems will have some logical
minimum connection period that is dictated by the link
technology. However, the number of disconnected periods
that must be stored could potentially be very large.

3.6.3 Exponentially Weighted Moving Average (EWMA)

It is not initially obvious how to use an exponentially
weighted moving average to compute a continuous metric
like the expected delay. However, it is possible to compute
it if we pretend that contact behavior is perfectly periodic
and use an EWMA to estimate the average connection and
disconnection lengths. Thus, each time a contact goes up or
down, we update the estimate as follows:

D=aD+ (1-a)d,
C=pC+(1-Pe,
D‘Z

E=sm+oy

E is the estimated delay, D is the average disconnection
time, and C is the average connection time. With this
computation, o and ( are tuning parameters, where a
higher value for the parameter means that the correspond-
ing metric will react more slowly to changes, but will be
more robust to short-term perturbations. We distinguish
the two parameters as the behavior of connection and
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Fig. 5. A wireless LAN trace converted into a DTN scenario. A user disconnects at time 1 and reconnects at time 2. (a) Wireless LAN scenario.

(b) Ad hoc DTN scenario.

disconnection times may differ. However, in our simula-
tions, we have maintained o = = 0.9. With a periodic
contact, as shown in Fig. 4c, the metric will match the
exact average.

This implementation has the advantage that it requires
fixed resources to implement. Unfortunately, it also has a
built-in tendency to underestimate the average waiting
time. The reason is that the averaging of D weights all
disconnection periods equally. However, the exact expected
delay computation weights long disconnections much more
than small disconnections because, in those periods, a
message must wait longer, on average, and because there is
a higher probability of arriving during a long wait period.

The figures in this section show that the differences
between these three metrics are relatively small. Thus, we
use the infinite window metric unless otherwise specified.

4 SCENARIOS

In order to validate our requirement of providing good
performance over a range of connectivity patterns, we
present simulation results from two very different scenar-
ios. To give the scenarios a basis in reality, we used real
mobility data. The first scenario is based on extensive
wireless LAN traces from Dartmouth College [30]. The
second scenario uses the schedule from Seattle’s bus
network [31].

4.1 Wireless LAN Scenario

In this scenario, mobile users carry computing devices
with radios. When they are in range of another user, they
exchange data. This represents an ad hoc DTN that could
be created by students at a school, employees at a
company, or people attending a conference. We used
mobility data from Dartmouth College’s extensive wireless
LAN traces [30]. They record the network connectivity of
more than 2,000 users over two years. The traces show
when each user connects and disconnects to any of
Dartmouth College’s 500 access points. This data is useful
because, while the mobility appears to be random, there
are patterns that can be exploited.

To transform the wireless LAN traces into an ad hoc
DTN, we consider two nodes to be connected when they are
associated with the same access point at the same time.
Access points are also DTN routers. In order to make the
scenarios a manageable size, only a connected subset of the
nodes from the wireless LAN trace are included. As an
example, consider the wireless LAN scenario shown in

Fig. 5a. At time 1, the trace file will show that the laptop
user is connected to the access point on the left. Later, it
moves out of range of the access point and, at time 2, it
associates with the second access point. A DTN scenario
that could be generated from this data is shown in Fig. 5b.
One laptop and one access point from the original scenario
were removed.

The raw Dartmouth data set is much too large for us to
simulate. To select a subset of the data that our simulator
could process, we used the data from a single month
(February 2003). We then randomly selected an initial node.
Next, we found that node’s “good” neighbors. We defined a
“good” neighbor as one that had at least 10 opportunities to
communicate over a period of one month. Then, we
randomly selected a new node from the good neighbor set
and added that node’s good neighbors to the set. We
repeated this until we had 30 nodes and we generated
10 different topologies in this fashion. This simple algo-
rithm guarantees that we do in fact have a connected graph,
where each node has some opportunities to communicate
with the rest of the network. In order to eliminate the warm-
up and cool down effects, we only record statistics for
messages generated in the second week.

4.2 Bus Scenario

This scenario represents a city that is providing a DTN
network by equipping its buses with wireless devices. As
the buses come within wireless range of each other, they
exchange messages. To generate this data, we used the
Seattle bus network schedule, as provided by the University
of Washington’s Intelligent Transportation Systems group
[31]. This region’s bus system is quite large, so, again, we
needed to select a subset of it. To do this, we selected all the
buses that ever service a single route as part of their day.
This includes 36 buses, which is comparable in size to the
parameters used for the Dartmouth data. We compute all
the times when the buses are within wireless range, which
we considered to be 200 meters, the nominally quoted range
for 802.11b. The scenario lasted for five weekdays and each
day’s schedule was identical. We only recorded statistics for
messages generated during the second day.

4.3 Comparison

These two scenarios were selected because they represent
very different connectivity patterns. The wireless LAN
scenario has unpredictable mobility, with some statistical
regularity. The bus scenario, on the other hand, is a planned
and scheduled system and, thus, has the exact same
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TABLE 1
Comparison of the Wireless LAN and Bus Scenario Parameters

Parameter Wireless LAN Scenario | Bus Scenario ‘
Scenario Duration 28 days 5 days

Nodes 30 36

Avg. Node Degree 15.6 22.8

Avg. Up Time 2050 seconds 77.0 seconds
Avg. Inter-contact Time 9.27 hours 5.32 hours
Avg. Total Connected Duration || 23.7 hours 0.405 hours
Avg. Num. Connections 41.6 20.0

connectivity on each of the five days. Additionally, the
nature of the connectivity is very different between the
scenarios. To quantify this difference, some scenario metrics
are shown in Table 1. The scenario duration is obviously
different, as they were generated from different data sets.
The number of nodes is comparable in the two scenarios.
The average node degree is the average number of contacts
that appear at least once during the scenario. The bus
scenario’s average degree is larger, even accounting for the
fact that there are more nodes in the scenario. This indicates
that the nodes tend to be connected to more neighbors than
in the wireless LAN scenario. The up time is the time where
each contact is available, the intercontact time is the time
where each contact is down, and the total connected
duration is the total up time for a single contact. These
values are much, much longer in the wireless LAN scenario
because users carrying laptops tend to stay in one place and
move slowly, whereas the buses only stop for breaks and
move quickly. Finally, the number of connections is the
number of times a single contact becomes available.
Counter-intuitively, this is higher in the wireless LAN
scenario. The reason is that there are some contacts which
go up and down a large number of times in a short period
of time. These anomalies are likely caused by poor wireless
LAN connectivity and not frequent mobility.

5 MICROBENCHMARKS

In order to understand the performance of our protocol, we
first consider microbenchmarks designed to investigate
specific aspects of the performance of the protocol. First, we
look at the performance under ideal conditions before
varying buffer space and bandwidth. Next, we consider the
MEED metric and variants. Third, we closely examine the
performance of per-contact routing and hop-by-hop flow
control. Finally, we study the overhead of our protocol.
We compare the performance of the MEED protocol to
three other delay-tolerant network routing protocols: the
earliest delivery (ED) and minimum expected delay (MED)
metrics [9] and epidemic routing [10]. The ED protocol is
used to illustrate the performance that can be achieved if
complete contact schedule data is available. MED is pre-
sented because it uses the same average-delay metric as
MEED, except that its values are computed using future
knowledge. Finally, epidemic is another protocol that does
not require schedule information. For the evaluation, we
created DTNSim?2, a discrete-event simulator for delay-
tolerant networks [32]. It is based on the simulator used for

the original DTN routing paper by Jain et al. [9]. It uses
FIFO, reliable links with fixed bandwidth, and delay.

To provide a baseline for comparison, we measure the
performance of an “ideal” protocol. This protocol is the ED
metric with infinite buffer space and infinite bandwidth.
This protocol has two attractive properties. First, if it cannot
deliver a message, then it is not possible for that message to
be delivered by any protocol. Thus, it provides an upper
bound on the delivery ratio. For this reason, we express all
delivery ratios as a percentage of the messages delivered by
the ideal protocol. Second, when it delivers a message, it is
not possible for that message to be delivered earlier. Thus,
it provides a lower bound for delay. When computing
average delay, we only include delivered messages.

In order to quantify the cost of the protocols, we measure
the total number of bytes transmitted. This includes
protocol bytes and data bytes and measures the total
amount of bandwidth consumed by the protocol. In order to
establish a minimum value, we modify the ideal protocol to
select minimum hop-count paths for each message. Thus, it
delivers all the messages with the minimum number of
transmissions.

In this section, we run the simulator with an ad hoc e-mail
workload. Each node generates 10 messages at regular
intervals, sent to a single random destination node. Each
message is 10,000 bytes long, which corresponds to users
exchanging small files or e-mail messages. For the wireless
LAN scenario, the interval is every 6 hours, for a total of
112 message generation times. For the bus scenario, the
interval is every hour, for 120 message generations.

5.1 Ideal Performance

First, we consider the performance of the four protocols
under ideal conditions. We simulate the two scenarios with
infinite buffer space and infinite bandwidth. The delivery
ratios are shown in Fig. 6a. For all scenarios with infinite
resources, ED is the same as the ideal protocol and, by
definition, delivers all the messages. Epidemic delivers
100 percent of the messages in these scenarios by flooding
the network. For the bus scenario, all protocols deliver all
the messages because the bus schedule is predictable and
repetitive. In the wireless LAN scenario, MEED manages
to deliver little more than 80 percent of the messages.
Considering that this protocol has no future knowledge
and the mobility in this scenario is random, this is
respectable. It is important to recall that, while the ED
and MED protocols outperfom MEED, in reality, it is not
possible to use them in the wireless LAN scenario because
it is not possible to have a schedule of human mobility in
advance. The MED protocol, which uses the same metric
as MEED except with future information, delivers around
90 percent of the messages simply because its metric is
more accurate because it is computed using future knowl-
edge. MEED and MED are not able to deliver all the
messages because, in some cases, there is only a single
path to the destination that requires very tight timing.
These protocols try to select the best average path, which
may not be good enough when a node is only connected a
small number of times.

The delay results, shown in Fig. 6b, are more interesting.
This figure makes the differences between the two scenarios
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very clear, as the ideal average delivery delay for the
wireless LAN scenario is around 85 hours, whereas it is
under 10 for the bus scenario. ED and epidemic match the
ideal delay, as expected. MEED'’s delay is larger than the
ideal by a fair margin. However, it compares favorably with
MED, matching it in the wireless LAN scenario and slightly
beating it in the bus scenario.

We plot the number of transmitted bytes in Fig. 6¢c. This
graph shows that epidemic transmits the most messages by
a very wide margin. This is not surprising as it floods the
network with each message. MEED transmits more mes-
sages than the other shortest path protocols. This is because
the MEED metric is constantly being recomputed, so it is
possible that a message will take a bad path only to be
forced to backtrack later. This problem is emphasized in the
wireless LAN scenario because the connectivity is random.
This is the reason that MEED requires significantly more
transmissions in that scenario than in the bus scenario.
Additionally, ED and MED have no protocol overhead, as
they assume that all nodes have the topology information
from the start. ED transmits more than the ideal number of
bytes because it finds minimum latency paths, while the
minimum number of bytes are transmitted when using
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minimum hop-count paths. Occasionally, the fastest path
requires additional hops.

5.2 Impact of Buffer Size

Next, we evaluate the impact of buffer space on the DTN
routing protocols. We evaluate each scenario with infinite
bandwidth contacts, but limited buffer space. The amount
of buffer space is shown as a percentage of the total number
of bytes generated. For this experiment, we only consider
the wireless LAN scenario because the results for the bus
scenario are similar. Looking at the graph of the delivery
ratio in Fig. 7a, we can immediately see that buffer size has
a significant impact on the epidemic protocol. This is
because it relies on having a sufficient buffer to have a copy
of every message at every node. In this particular scenario,
it needs buffer for approximately 60 percent of the data
generated, and there is a very predictable relationship
between the buffer size and the delivery ratio. The other
protocols require much less buffer space because they use a
single copy of each message. Only when the buffer size
drops below 10 percent of the total traffic generated does
the delivery ratio of the other protocols decrease. A buffer-
constrained network is similar to a well-provisioned
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Fig. 8. Wireless LAN scenario with varying link bandwidth. (a) Delivery ratio. (b) Delay.

network that is being used to tranfer large amounts of data.
In this situation, MEED has better performance than
epidemic routing, which is the only other protocol that
does not use future information.

Looking at the latency results in Fig. 7b, we can see that
the delay is not sensitive to the buffer space as the
performance does not change much. The average delay
for the ED and epidemic protocols matches the ideal
minimum latency, as expected. Epidemic’s delay decreases
as it drops messages because the average latency calculation
only includes delivered messages and it drops the oldest
messages first. Thus, the delivered messages are those that
are delivered quickly. Interestingly, the latency for MED
and MEED are very similar even though MEED is an
estimate of the MED value and, intuitively, should be
worse. The reason is that it does not deliver as many
messages, so it is not valid to compare the two directly
without taking into account the delivery ratios in Fig. 7a.

5.3 Impact of Bandwidth

For this experiment, all nodes have infinite buffer space but
the contacts have varying data rates. We test the rates
between 100 kbps and 10 Mbps. Again, we only present the
results from the wireless LAN scenario as the bus scenario
results do not provide any additional insight. It is important
to note that, because the average connection times are so
long for the wireless LAN scenario, a large amount of data
can be transferred even at very low data rates. The e-mail
workload generates a small amount of data (336 MB), so,
assuming that all the contacts are up for the average
connection time shown in Table 1, a data rate of 1.31 Mbps
is sufficient to deliver all the messages that are generated in
the scenario over a single hop. Thus, it is important to note
that it is only at data rates below 2 Mbps that this scenario
begins to become bandwidth limited.

For all four protocols, the delivery ratio decreases
slightly as the bandwidth decreases, as shown in Fig. 8a.
However, there is no change in their relative positions until
the bandwidth is extremely low. It is important to note that
ED and MED are more sensitive to the reduced bandwidth
than epidemic and MEED. With infinite bandwidth, ED was

able to deliver 100 percent of the messages, as shown on the
right-hand side of Fig. 7a. However, even with 10 Mbps
links, it drops approximately 2 percent of the messages and
it drops 15 percent of the messages with 1 Mbps links.
MEED’s performance, by contrast, is nearly flat. It only
drops an additional 4 percent of the messages over the same
interval. The reason is that ED and MED use source routing
and select paths assuming that there is no competing traffic.
With the bandwidth restrictions, messages might miss the
contact they were supposed to take and be undeliverable.
Epidemic, on the other hand, tries all paths. Thus, if one
contact is being used, it will try others. Similarly, MEED’s
per-contact routing allows it to adapt to the varying
conditions.

The results for the latency in Fig. 8b show that the delay
for all protocols increases slightly as the bandwidth
decreases due to the longer transfer times. This trend is
probably understated, as all the protocols drop messages as
the data rate decreases. This graph shows that MEED’s
performance is slightly worse than MED, as expected. At
data rates below 1 Mbps, all the protocols behave
erratically. The reason is that this is the point where the
protocols really begin to drop significant numbers of
messages, so the data points here are all measuring the
delay for slightly different sets of messages. MED shows an
unusual bump around 2 Mbps, where its delay increases
before decreasing again. The increase is due to the
bandwidth restrictions increasing the average delay for
most of the messages. The decrease is then caused by the
delivery ratio decreasing since, at that point, MED is only
able to deliver the messages which take the least time to
arrive at the destination.

5.4 MEED Metric Error

The previous results have shown that MEED can achieve
delivery ratios and delays comparable to, and sometimes
exceeding, existing approaches, without their disadvantages.
This implies that it is a reasonable metric for selecting paths.
Since this metric estimates a physical quantity, average delay,
we wished to test how useful this metric might be for
predicting delivery delay. To answer this question, we
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Fig. 9. Sample expected delay metrics for a single contact.

analyzed the performance of the infinite window metric, the
sliding window metric (window = 2 days), and the EWMA
metric (o = 0.9) over a single hop. We selected 30 random
contacts from the wireless LAN scenario, sampled the metric
values at one minute intervals, and compared them to the
actual waiting time. Sample metric values for a single contact
are shown in Fig. 9. In order to make the error between
different contacts comparable, we divided the absolute error
by the average waiting time for each contact. A histogram of
the relative errors is shown in Fig. 10. This histogram shows
that most of the samples fell between —4 and 2 average
waiting times of the true value. This is a large range of errors,
which indicates that none of the metric variants are precise.
Additionally, the histogram clearly shows that the infinite
window metric has a tendency to overestimate the waiting
time, while the other two metrics tend to underestimate. Both
the sliding window and EWMA variants have a peak at zero
error, which is what we would ideally like to see. However,
their distribution clearly underestimates the delay, on
average. The infinite window metric peaks a bit above zero,
but, due to the shape of the distribution, its overall average is
somewhat closer to zero.

We also evaluated the metric’s performance over com-
plete paths. We instrumented the simulator to record the
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MEED metric value when the message is forwarded from
the source to another node. This is the latest time that the
source can make an estimate and, thus, should be the most
accurate estimate available to that node. We plotted the
prediction for each message against the actual recorded
end-to-end latency. Ideally, these two values would be
equal and all the points on the y = « line. The results for the
infinite window metric from the wireless LAN scenarios are
shown in Fig. 11. This figure shows that there is limited
correlation between the MEED value and the actual end-to-
end delay, as the points appear to be randomly distributed.

The results in this section indicate that the ability for
MEED to estimate the end-to-end delay is not ideal. Part of
this limitation is simply because it is an average. Consider a
contact that has two different behaviors, one where the
waiting time is small, and another where the waiting time is
very large. The exact average for this contact will be a bad
estimate of the end-to-end delay for both sections, although
the average errors will be zero. This suggests that more
research is required here. It may be possible to estimate a
worst-case end-to-end delay by incorporating the variance
or a confidence estimate. Alternatively, time-varying
statistical or machine learning approaches may be more
accurate.

5.5 MEED Variants

The previous results all used the infinite window variant of
the MEED metric. Here, we will consider the two additional
variants presented in Section 3.6. Additionally, in order to
determine what impact the choice of metric has on the
performance, we also implemented a fourth metric variant
that is intentionally a bad choice. This metric uses the time
since the contact was last available and, so, we call it the
“Last Up” metric. Intuitively, this should not help in
selecting a good path. In fact, in many scenarios, the last
available contact will not be seen for a long time and, so,
this will be a poor choice.

The delivery ratios for all four variants and both
scenarios are shown in Fig. 12a. Interestingly, in the
wireless LAN scenario, the Last Up metric actually delivers
more messages than the infinite window and EWMA
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metric. The reason for this becomes clear when looking at
the transmitted bytes, shown in Fig. 12c. The Last Up metric
transmits far more bytes than the others. Since the metric
changes so often, it effectively ends up forwarding the
message along nearly every available contact, which
explains the large number of transmissions. In the wireless
LAN scenario, because the mobility is pseudorandom, this
strategy actually works fairly well.

Last Up performs significantly worse in the bus scenario.
The reason is that this scenario is one where Last Up is
exactly the wrong choice. When a bus passes another one, it
will be a long time before it passes it again, as, generally,
they are traveling in opposite directions. Thus, in this case,
the message ends up getting passed to buses that have just
passed the destination and will not see it for a while. If it
remained on one bus, the messages would likely end up
being delivered.

For the other three metrics, the performance is very
similar. They are each slightly better than the others in some
aspect and worse in another, with no clear winner.
However, it is clear that changing the metric can have a
significant impact on system behavior, as shown by the Last
Up metric. Thus, it may be possible to improve the
performance of our system simply by substituting a
superior metric.

5.6 Routing Decision Time

In Section 3.2, we argued that making decisions as late as
possible is advantageous in delay-tolerant networks, as it
allows the protocol to adapt to changes in both the estimate
of metric values and network topology. In order to
investigate the performance impact of this design choice,
we implemented two variants of the MEED protocol: source
routing and per-hop routing. The source routing variant
plans the entire path as soon as possible at the source, after
which no changes are made. The per-hop routing variant
calculates the next hop when the message arrives at a new
node. At that point, the message can only be sent to that
next hop. The delivery ratio for these variants is shown in
Fig. 13a, and the delay is shown in Fig. 13b. These graphs
show that per-contact routing is significantly better. In the
Wireless LAN scenario, per-contact routing delivers a third
more messages than source routing. The delay increases
because more messages are being delivered. In short, per-
contact routing is a key part of the MEED protocol’s
performance.

We also studied the impact this design decision has on
other protocols to show that it is applicable to other
protocols. We modified the MED protocol to support per-
contact routing instead of source routing. This means that, if
a contact becomes available that does not have the best

Authorized licensed use limited to: Bibliothéque ETS. Downloaded on November 27,2020 at 19:15:25 UTC from IEEE Xplore. Restrictions apply.



JONES ET AL.: PRACTICAL ROUTING IN DELAY-TOLERANT NETWORKS

100% | | '
% R I O R O |
................ —
90% pe
""‘ /
S 1
S 8% 7
g I /
= 1
5 80% ':,
; /
4
H
75% |
70% /
MED ——
MED+Per-Contact Routing -------

65% L L
0.0 10M 20M 30M 40M 50M 6.0M 7.0M 8.0M

Bandwidth (bps)

9.0M 10.0M

Fig. 14. Comparison of MED with and without per-contact routing.

average performance, but is a good choice when it is
available, the MED per-contact protocol can take advantage
of it. This changes the performance of MED for all scenarios,
since it has the most impact when there are bandwidth
limits. Thus, we plot the delivery ratio of this protocol when
there is infinite buffer space but limited bandwidth in
Fig. 14. This figure shows that per-contact routing improves
MED in two ways. First, in increases the raw delivery ratio
by around 4 percent. Second, it decreases MED’s sensitivity
to the low bandwidth, as its delivery ratio decreases less
than MED with source routing. Per-contact routing also
decreases the average delay from 119 hours to 111 hours. It
achieves these gains with some cost: It increases the number
of transmitted bytes from 190 MB to 260 MB.

5.7 Hop-by-Hop Flow Control

The shortest-path protocols studied here use a “drop tail”
queue policy. If there is insufficient buffer space when a
message arrives, it is dropped. This source of loss could be
reduced by using hop-by-hop flow control, so that the
message is only forwarded if sufficient buffer is available.
This scheme has been shown to be effective at dealing with
congestion in wireless sensor networks [33].

The performance with and without flow control for the
wireless LAN scenario with limited buffer space is shown
in Fig. 15. For ED and MED, flow control increases the
delivery ratio by a few percent when the buffer space is
between 3-10 percent of the generated messages. When the
buffer is very small, it actually makes things worse. The
reason is that, with flow control, if the next hop is full, there
is now less buffer space available at the previous node. This
can, in turn, cause other nodes to block, which prevents
some messages from making progress toward the destina-
tion. If the message had been dropped instead, at least one
previous message would be able to make forward progress.

For MEED, flow control improves the performance by a
significant margin when the buffer space is less than
8 percent of the generated bytes. The difference is that
MEED uses per-contact routing, so when one next hop is
blocked because the buffer is full, it is able to attempt
delivery via an alternative route. This means that it can
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Fig. 15. Wireless LAN performance with hop-by-hop flow control and
limited buffer space.

spread the load across the network. From these results, it
seems that hop-by-hop flow control is a significant
improvement for dealing with low-buffer scenarios,
although care must be taken when the available buffer
space is extremely limited.

5.8 Protocol Overhead

In order to measure the overhead introduced by the
epidemic distribution of the link-state tables, we generated
10 topologies from the Dartmouth data with different sizes.
We simulated them for one month without any traffic and
discarded the overhead in the first week. The protocol is
initiated each time a connection is established, so if a
scenario has more connections, it will generate more over-
head. To compensate for this, we normalized the overhead
by dividing the total protocol bytes by the total number of
connections. This gives us the average bytes of overhead that
are exchanged each time a connection is established.

The average overhead with the 90 percent confidence
interval is shown in Fig. 16. The theoretical analysis showed
that the overhead grows linearly with the size of the
network, assuming that the node degree stays constant. The
overhead here appears to grow slightly faster than linearly.
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Fig. 16. Protocol overhead per connection.
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The reason is that, in our scenario, nodes that share an
access point form a clique, which means that adding nodes
tends to increase the average node degree.

The actual amount of overhead data exchanged is
small relative to the amount of message data that can be
exchanged during a contact. With a network of 50 nodes,
less than 10 kB is exchanged each time a connection comes
up. This will take less than a tenth of a second to transmit at
802.11’s base rate of 2 Mbps. This is a tiny portion of the
bandwidth. Recall from Table 1 that, even in the bus
scenario, the average up time is 77 seconds. With 100 nodes,
the average overhead per connection is less than 25 kB,
which is still less than a second of transmission time.
However, the overhead could become unmanageable as the
network grows. This suggests that hierarchical routing may
be necessary for very large networks.

6 REALISTIC SIMULATIONS

The previous section looked at the performance of the
protocol under various ideal conditions to understand the
impact of individual parameters on the performance of our
protocol. In this section, we look at the performance of four
workloads with plausible combinations of parameters. For
each workload, we set the buffer size on each node to 1 GB
because the current price of a 1 GB flash disk is under
$20 USD, so it is reasonable to assume that even small
embedded devices can be equipped with at least this much
storage. We set the bandwidth of each contact to 2 Mbps
since that is the base rate for 802.11b and, thus, represents a
lower bound of the bandwidth available between two nodes
within wireless range. Experiments using 802.11 in drive-by
scenarios report a wide range of average goodputs. The
results vary from an average goodput of 5.5 Mbps [34],
down to 0.9 Mbps [6], [16], depending on speeds and
antenna location. Thus, 2 Mbps seems to be a realistic
midpoint. Additionally, it is safe to assume that future
wireless technology improvements will push that data rate
even higher.

The scenarios are created by varying two parameters:
traffic composition and communication pattern. For traffic
composition, we have an e-mail workload and a mixed

message workload. The email workload is the one that was
used in the previous section, where each node generates
10 messages that are each 10,000 bytes long. The mixed-
message workload only generates five messages of
10,000 bytes, but also generates two messages that are
1,000,000 bytes each, representing larger files being ex-
changed, such as digital photos. The mixed-message work-
load generates 20 times more traffic than the e-mail
workload.

For the communication pattern, we use an ad hoc pattern
and a gateway pattern. The ad hoc pattern is the same as was
used in the previous section, representing users in the
network communicating with each other. The gateway
pattern represents users communicating with a single
Internet gateway. To simplify the scenario, we assume that
the gateway node has an infinite bandwidth and zero
latency connection to the Internet, so all outbound and
inbound messages are delivered instantly. We selected the
node with the highest degree as the gateway since it is the
node with the best connectivity to the rest of the network.

6.1 Wireless LAN

The results for the four workloads in the wireless LAN
scenario are shown in Fig. 17. While they are generally
similar, a few differences can be observed. The epidemic
protocol consistently delivers more messages than any
other protocol. In the mixed-message workload, the
performance of all the protocols decreases due to the
increased amount of traffic in the network. However,
MEED'’s performance decreases less than the others, to the
point that it outperforms MED in the gateway workload.
MEED’s ability to adapt to changing network conditions
gives it a distinct advantage in this scenario, where there is
a significant amount of network congestion. Unfortunately,
MEED still has a longer delay than the other protocols,
except in the gateway e-mail case where it has lower delay
than MED.

6.2 Bus

The bus scenario has a higher average node degree than the
wireless LAN scenario. Correspondingly, the average path

Authorized licensed use limited to: Bibliothéque ETS. Downloaded on November 27,2020 at 19:15:25 UTC from IEEE Xplore. Restrictions apply.



JONES ET AL.: PRACTICAL ROUTING IN DELAY-TOLERANT NETWORKS

100%

80%

Delivery Ratio
]
2

IS
S
B

20%

% | |
Ad-Hoc Email  Ad-Hoc Mixed Gateway Email Gateway Mixed

(@

957

Delay (hours)

2
Ad-Hoc Email Ad-Hoc Mixed Gateway Email Gateway Mixed

(b)

Fig. 18. Bus scenario performance under realistic conditions. (a) Delivery ratio. (b) Delay.

length is also lower. This means that bandwidth and buffer
restrictions typically have less impact on the performance in
this scenario, as many of the deliveries occur directly from
the source to the destination. Thus, the delivery ratios are
still 100 percent for all the protocols with the e-mail
workloads, as shown in Fig. 18a. However, this scenario
also has a very short average connection time when two
buses pass each other on the road. When there are larger
messages in the network, as is the case with the mixed
workload, the performance changes dramatically. With this
workload, MEED outperforms the other protocols. The
reason is that ED and MED plan their routes with the
assumption that there is no competing traffic. This
assumption is violated with this workload, as a single large
message can occupy almost all of a contact’s time. Epidemic
is not able to deliver all the messages in this scenario as
there is only 11 percent buffer space and because the
contacts do not last long enough to exchange all the
messages.

As for the delay, shown in Fig. 18b, MEED outperforms
MED for all the bus scenarios. For the gateway scenarios,
MEED’s delay is second only to the epidemic protocol. In
the other cases, it is only an hour or two more than the ideal
minimum delay.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the minimum estimated
expected delay (MEED) path metric, which uses observed
information to estimate waiting times for each contact. We
presented an epidemic protocol for propagating topology
updates through a delay-tolerant network. The result is a
routing system that can deliver data in a DTN without any
knowledge about the communication schedules. The only
other protocols with this property are flooding protocols
that rely on sending many copies of each message. We have
shown through simulations that it approaches, and, in some
cases, exceeds, the performance of protocols that have
complete knowledge of the network topology. This shows
that it is feasible to use shortest path routing in delay-
tolerant networks.

Epidemic routing also does not require topology in-
formation, and the results show that it performs very well.
However, MEED achieves a significant fraction of epidemic
routing’s delivery ratio using only a single message, instead
of one copy for every node. This is much more efficient. It
also suggests that it should be possible to use the MEED
metric to selectively send a small number of duplicates in
order to achieve reliable delivery at a low cost.

We presented the concept of per-contact routing, where
the routing tables are recomputed every time a connection
is made. This permits the routing to react to topology
changes and take advantage of opportunistic contacts.
Indeed, the results show that this improves the latency
and delivery ratio significantly for shortest path routing
protocols. We also showed that hop-by-hop flow control is
an essential strategy for dealing with temporary buffer
shortages.

The results presented here show that, while the MEED
metric is capable of selecting paths that achieve perfor-
mance comparable to, and sometimes better than, existing
techniques, there is certainly room for improvement. In
particular, the MEED approach assumes that there is a
consistent delay that can be determined, where, in many
DTN scenarios, this may be a more complex pattern. For
example, in the bus scenario, delay is likely to vary with
time of day. There are many opportunities to apply
advanced statistical or machine learning techniques here.
Additionally, this work has only looked at attempting to
minimize end-to-end delay. There may be other metrics that
can yield better performance. Our benchmarks show that
the protocol overhead is a very small fraction of total
contact duration for networks of hundreds of nodes.
However, more efficient schemes will be required for very
large networks composed of thousands of nodes.

We believe that the most important contribution that can
be made to delay-tolerant routing is to build real networks
and applications. This is the only way to determine the
practical requirements for routing protocols. Protocols that
require no configuration, like the one presented here, can
facilitate this process by reducing the amount of effort
required to deploy and extend these networks.

Authorized licensed use limited to: Bibliothéque ETS. Downloaded on November 27,2020 at 19:15:25 UTC from IEEE Xplore. Restrictions apply.



958

Waiting time
A

d;
|

Contact State

Up —
Down | | l >

»  Time

Fig. 19. Example contact waiting time and state.

APPENDIX
DERIVATION OF THE EXPECTED DELAY

The expected delay for a contact is computed assuming that
all arrival times are equally likely. When the contact is up,
the waiting time is zero. When the contact is down, the
waiting time is the time until the contact comes back up
again, as shown in Fig. 19. Since the arrival time probability
distribution is uniform, to compute the expected value of
the waiting time, we can compute the area under the curve
and then divide by the length of the time interval. For a
single disconnected interval, d;, the area under the curve is

given by %df The area under a connected interval is 0. Thus,
the final metric is given by
no1lg2
MEED = Z% (2)
DY
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